login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A176981 Expansion of 1+(1-2*x)/(-1+2*x+x^2). 3
1, 0, -1, -2, -5, -12, -29, -70, -169, -408, -985, -2378, -5741, -13860, -33461, -80782, -195025, -470832, -1136689, -2744210, -6625109, -15994428, -38613965, -93222358, -225058681, -543339720, -1311738121, -3166815962, -7645370045 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

It is essentially A000129, A077985 and A069306 except for signs and offsets.

a(n)=a(n - 1) - sqrt(2*a(n - 1)^2 + (-1)^n) = a(n-1)*(1-sqrt(2-(-1)^n/a(n-1)^2)) for n>0.

So in the limit of n->infinity, a(n+1)/a(n)= 1-Sqrt(2).

This matches the following formula in A000045:

Fibonacci(n) = Fibonacci(n - 1)*(1 + sqrt( 5+4*(-1)^(n-1)/Fibonacci(n-1)^2) )/2.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (2,1).

FORMULA

a(0)=1, a(1)=0, a(2)=-1, a(n)=2*a(n-1)+a(n-2) [From Harvey P. Dale, Dec 24 2011]

G.f.: 1 / (1 + x^2 / (1 - 2*x / (1 - x / (1 + x)))). - Michael Somos, Jan 03 2013

G.f.: 1 - Q(0)*x^2/2 , where Q(k) = 1 + 1/(1 - x*(4*k+2 + x)/( x*(4*k+4 + x) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 08 2013

EXAMPLE

1 - x^2 - 2*x^3 - 5*x^4 - 12*x^5 - 29*x^6 - 70*x^7 - 169*x^8 - 408*x^9 - 985*x^10 + ...

MATHEMATICA

a[0] = 1; a[n_] := a[n] = a[n - 1] - Sqrt[2*a[n - 1]^2 + (-1)^n]; Table[a[n], {n, 0, 30}]

Join[{1}, LinearRecurrence[{2, 1}, {0, -1}, 30]] (* or *) Join[{1}, Rest[ CoefficientList[Series[1 + (1 - 2 x)/(-1 + 2 x + x^2), {x, 0, 30}] , x]]] (* Harvey P. Dale, Dec 24 2011 *)

CROSSREFS

Cf. A000129.

Sequence in context: A130009 A324979 A048624 * A215936 A000129 A077985

Adjacent sequences:  A176978 A176979 A176980 * A176982 A176983 A176984

KEYWORD

sign,easy

AUTHOR

Roger L. Bagula, Apr 30 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 07:47 EST 2019. Contains 329914 sequences. (Running on oeis4.)