login
A176960
Primes p such that p^2 - 8, p^2 - 6 and p^2 - 2 are prime.
0
5, 7, 467, 4373, 5987, 11933, 13463, 13907, 14747, 19843, 20407, 22307, 24677, 36563, 37693, 40213, 41603, 42397, 43003, 44203, 56747, 58963, 66047, 66173, 87407, 91033, 98597, 98873, 101183, 115523, 122323, 124703, 126107, 139333
OFFSET
1,1
COMMENTS
[In French: "avorteurs de quadruplets".]
p*p is the lonely composite number in quadruplet (10k+1, 10k+3, 10k+7, 10k+9). Necessary: p^2 = 10k + 9.
MATHEMATICA
Select[Prime[Range[13000]], AllTrue[#^2-{2, 6, 8}, PrimeQ]&] (* Harvey P. Dale, Oct 23 2024 *)
PROG
(Magma) [p: p in PrimesUpTo(1000000)| IsPrime(p^2-8) and IsPrime(p^2-6) and IsPrime (p^2-2)]; // Vincenzo Librandi, Aug 06 2010
CROSSREFS
Sequence in context: A344361 A159019 A059394 * A114368 A260830 A260827
KEYWORD
nonn
AUTHOR
Alain MAROT (marot.alain(AT)orange.fr), Apr 29 2010
EXTENSIONS
Corrected (5 inserted) and extended by Vincenzo Librandi, Aug 06 2010
STATUS
approved