%I #23 Aug 23 2024 20:54:43
%S 2,11,36,141,646,3151,15656,78161,390666,1953171,9765676,48828181,
%T 244140686,1220703191,6103515696,30517578201,152587890706,
%U 762939453211,3814697265716,19073486328221,95367431640726,476837158203231,2384185791015736,11920928955078241,59604644775390746
%N a(n) = 5^n + 5*n + 1.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (7,-11,5).
%F a(n) = A000351(n) + A008587(n) + 1 = A000351(n) + A016861(n).
%F From _R. J. Mathar_, Apr 29 2010: (Start)
%F a(n) = 7*a(n-1) - 11*a(n-2) + 5*a(n-3).
%F G.f.: ( -2+3*x+19*x^2 ) / ( (5*x-1)*(x-1)^2 ). (End)
%F E.g.f.: exp(x)*(1 + exp(4*x) + 5*x). - _Stefano Spezia_, Aug 19 2024
%e a(3) = 5^3 + 5*3 + 1 = 141.
%t LinearRecurrence[{7,-11,5},{2,11,36},25] (* _Stefano Spezia_, Aug 19 2024 *)
%o (PARI) a(n)=5^n+5*n+1 \\ _Charles R Greathouse IV_, Aug 23 2024
%Y Cf. A000351, A008587, A016861, A176691, A176805.
%K nonn,easy
%O 0,1
%A _Jonathan Vos Post_, Apr 28 2010
%E First term corrected by several authors, Apr 29 2010
%E a(22)-a(24) from _Stefano Spezia_, Aug 19 2024