%I #5 Apr 25 2016 11:44:15
%S -1,1,0,1,0,0,1,1,0,0,1,0,0,0,0,1,1,1,0,0,0,1,0,0,0,0,0,0,1,1,0,1,0,0,
%T 0,0,1,0,1,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,
%U 1,1,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,0,0,0,0,0,0,0
%N Triangle T(n,k) read by rows. Signed subsequence of A051731.
%C Let A=A176890*A176890, B=A*A, C=B*B, D=C*C and so on, then the leftmost column in the last matrix converges to the Moebius function A008683.
%F T(n,k) = if n=1 and k=1 then -1 elseif n=k then 0 elseif k divides n then 1 else 0.
%e Table begins:
%e -1,
%e 1,0,
%e 1,0,0,
%e 1,1,0,0,
%e 1,0,0,0,0,
%e 1,1,1,0,0,0,
%e 1,0,0,0,0,0,0,
%e 1,1,0,1,0,0,0,0,
%e 1,0,1,0,0,0,0,0,0,
%e 1,1,0,0,1,0,0,0,0,0,
%o (Excel) =if(and(row()=1;column()=1);-1;if(mod(row();column())=0;1;0)-if(and(column()>1;row()=column());1;0))
%Y Cf. A051731, A008683.
%Y This is A176918 * the diagonalized mu(n).
%K sign,tabl
%O 1,1
%A Mats Granvik and _Gary W. Adamson_, Apr 28 2010