

A176885


Let p*q = A006881(n) be the nth number that is the product of two distinct primes, with p = prime(i), q=prime(j); a(n) = p^j  q^i.


1



1, 3, 9, 2, 32, 21, 51, 122, 111, 282, 237, 560, 489, 1898, 1794, 6200, 995, 2017, 13428, 19154, 4059, 2166, 8151, 73212, 16341, 58208, 89088, 176186, 32721, 383766, 65483, 530072, 1940958, 131013, 740022, 262083, 1592642, 4781120, 5634480, 524221
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Table of n, a(n) for n=1..40.


EXAMPLE

For n=3, A006881(3) = 14 = 2*7, p=2, i=1, q=7, j=4; a(n) = 2^47^1 = 9.


MAPLE

A176885 := proc(n) c := A006881(n) ; pm := A020639(c) ; pk := A006530(c) ; pm^ numtheory[pi](pk) pk^numtheory[pi](pm) ; end proc:
seq(A176885(n), n=1..80) ; # R. J. Mathar, May 01 2010


CROSSREFS

Cf. A006881.
Sequence in context: A286676 A246379 A303941 * A257731 A257733 A098323
Adjacent sequences: A176882 A176883 A176884 * A176886 A176887 A176888


KEYWORD

nonn


AUTHOR

JuriStepan Gerasimov, Apr 28 2010


EXTENSIONS

a(14) and a(15) corrected and sequence extended by R. J. Mathar, May 01 2010
Definition clarified by N. J. A. Sloane, Feb 16 2019


STATUS

approved



