login
This site is supported by donations to The OEIS Foundation.

 

Logo

The submissions stack has been unacceptably high for several months now. Please voluntarily restrict your submissions and please help with the editing. (We don't want to have to impose further limits.)

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A176878 Numbers that are the product of 3 distinct primes a, b and c, such that a^2 + b^2 + c^2 is prime. 2
105, 231, 273, 345, 357, 399, 483, 561, 627, 651, 663, 705, 759, 777, 795, 903, 957, 969, 987, 1005, 1023, 1131, 1173, 1221, 1239, 1281, 1353, 1407, 1419, 1491, 1533, 1551, 1581, 1605, 1659, 1677, 1743, 1749, 1887, 2013, 2037, 2055, 2091, 2121, 2139 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..45.

EXAMPLE

105 = 3*5*7; 3^2 + 5^2 + 7^2 = 83.

MATHEMATICA

l[n_]:=Last/@FactorInteger[n]; f[n_]:=First/@FactorInteger[n]; lst={}; Do[If[l[n]=={1, 1, 1}, a=f[n][[1]]; b=f[n][[2]]; c=f[n][[3]]; If[PrimeQ[a^2+b^2+c^2], AppendTo[lst, n]]], {n, 7!}]; lst

Take[Union[Times@@@Select[Subsets[Prime[Range[50]], {3}], PrimeQ[Total[#^2]]&]], 50]  (* Harvey P. Dale, Mar 11 2011 *)

PROG

(PARI) lst(lim)=my(v=List()); forprime(a=3, lim^(1/3), forprime(b=a+2, sqrt(lim\a), forprime(c=b+2, lim\(a*b), if(isprime(a^2+b^2+c^2), listput(v, a*b*c))))); vecsort(Vec(v), , 8) \\ Charles R Greathouse IV, Mar 11 2011

CROSSREFS

Cf. A006881, A014574, A176875, A176876, A176877.

Sequence in context: A242063 A228307 A179143 * A088595 A229094 A250757

Adjacent sequences:  A176875 A176876 A176877 * A176879 A176880 A176881

KEYWORD

nonn

AUTHOR

Vladimir Joseph Stephan Orlovsky, Apr 27 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 28 05:09 EDT 2015. Contains 261118 sequences.