The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A176838 Primes p such that p^3 = q//3 for a prime q. 2
 17, 157, 257, 277, 397, 677, 877, 997, 1217, 1697, 1997, 2417, 2777, 3257, 3517, 3697, 4157, 4177, 5077, 5197, 5897, 6277, 7417, 7517, 8377, 9397, 9497, 9677, 9857, 11197, 11597, 12157, 12457, 12697, 13397, 13477, 13877, 14057, 14197, 15017, 16477, 17597, 18097 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Diophantine equation p^3 = 10 * q + 3 with side condition p and q prime. Necessarily LSD for such primes p is e = 7 and the two Last Significant Digit strings are "17", "57", "77" or "97". REFERENCES J.-P. Allouche, J. Shallit: Automatic Sequences, Theory, Applications, Generalizations, Cambridge University Press, 2003 G. H. Hardy, E. M. Wright, E. M., An Introduction to the Theory of Numbers (Fifth edition), Oxford University Press, 1980 F. Padberg: Zahlentheorie und Arithmetik, Spektrum Akademie Verlag, Heidelberg - Berlin 1999 LINKS Harvey P. Dale, Table of n, a(n) for n = 1..1000 EXAMPLE 17^3 = 4913 = prime(94)//3, 17 = prime(7) is first term. 157^3 = 3869893 = prime(32838)//3, 157 = prime(37) is second term. MATHEMATICA Select[Range[7, 20000, 10], PrimeQ[#]&&PrimeQ[FromDigits[Most[IntegerDigits[ #^3]]]]&] (* Harvey P. Dale, Oct 03 2013 *) CROSSREFS Cf. A000040, A000578, A174979. Sequence in context: A160699 A034272 A142087 * A176622 A125380 A126538 Adjacent sequences:  A176835 A176836 A176837 * A176839 A176840 A176841 KEYWORD base,nonn AUTHOR Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 27 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 25 21:55 EST 2020. Contains 332264 sequences. (Running on oeis4.)