%I #4 Jan 24 2020 04:27:23
%S 1,1,4,2,6,4,8,7,12,6,10,15,14,8,26,21,16,12,16,30,32
%N Number of pairs (a, b) of positive integers with a <= b such that both a^2 - nb and b^2 - na are squares
%e a(4) = 2 because the pairs (4, 4) and (5, 6) have the specified property: 4^4 - 4*4 = 0^2; 5^2 - 4*6 = 1^2, 6^2 - 4*5 = 4^2.
%Y a(n) = A176835(n) + A176837(n)
%K nonn
%O 1,3
%A _Jens Voß_, Apr 27 2010