

A176768


Smallest power of 8 whose decimal expansion contains n.


2



4096, 1, 512, 32768, 64, 512, 64, 32768, 8, 4096, 1073741824, 4398046511104, 512, 134217728, 262144, 2097152, 16777216, 134217728, 1073741824, 68719476736, 2097152, 262144, 2251799813685248, 9223372036854775808, 1073741824
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

This is to 8 as A176763 is to 3 and as A030001 is to 2.


LINKS

Robert Israel, Table of n, a(n) for n = 0..9999


FORMULA

a(n) = MIN{A001018(i) such that n in decimal representation is a substring of A001018(i)}.
a(n) = 8^A062525(n).  Michel Marcus, Sep 30 2014


EXAMPLE

a(1) = 1 because 8^0 = 1 has "1" as a substring (not a proper substring, though).
a(2) = 512 because 8^3 = 512 has "2" as a substring.
a(3) = 32768 because 8^5 = 32768 has "3" as a substring.


MAPLE

F:= proc(dmax) local R, count, x, N, L, d, i, v;
count:= 0: x:= 1/8: N:= 10^dmax:
while count < N do
x:= 8*x;
L:= convert(x, base, 10);
for d from 1 to min(dmax, nops(L)) do
for i from 1 to nops(L)d+1 do
v:= add(L[j]*10^(ji), j=i..i+d1);
if not assigned(R[v]) then count:= count+1; R[v]:= x fi
od od od:
seq(R[v], v=0..N1);
end proc:
F(2); # Robert Israel, Dec 25 2019


CROSSREFS

Cf. A001018, A030001, A176763, A176764A176773.
Sequence in context: A076154 A182685 A182686 * A223601 A186490 A223694
Adjacent sequences: A176765 A176766 A176767 * A176769 A176770 A176771


KEYWORD

base,easy,nonn


AUTHOR

Jonathan Vos Post, Apr 25 2010


EXTENSIONS

More terms from Sean A. Irvine and Jon E. Schoenfield, May 05 2010
a(0)=4096 inserted by Robert Israel, Dec 25 2019


STATUS

approved



