login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Sum of digits of all distinct prime factors of n-th semiprime.
2

%I #10 Feb 06 2021 00:05:44

%S 2,5,3,7,9,8,10,4,5,6,5,10,12,12,7,7,7,11,7,13,13,6,9,8,12,9,7,13,9,

%T 14,11,7,13,15,10,13,10,16,15,2,9,8,10,17,15,14,10,6,16,12,9,18,11,12,

%U 13,4,17,19,10,15,10,18,16,4,18,10,6,12,11,10,12,11,12,13,12,7,16,19,14,14,7

%N Sum of digits of all distinct prime factors of n-th semiprime.

%H Michael S. Branicky, <a href="/A176707/b176707.txt">Table of n, a(n) for n = 1..10000</a>

%e a(1)=2 because 1st semiprime=2*2 and 2=2; a(2)=5 because 2nd semiprime=2*3 and 2<3.

%p A007953 := proc(n) add(d,d=convert(n,base,10)) ; end proc:

%p A176707 := proc(n) s := A001358(n) ; add( A007953(p), p = numtheory[factorset](s) ) ; end proc: seq(A176707(n),n=1..120) ; # _R. J. Mathar_, Apr 25 2010

%o (Python)

%o from sympy import factorint

%o def aupton(terms):

%o alst, m = [], 4

%o while len(alst) < terms:

%o f = factorint(m)

%o if sum(f.values()) == 2: # semiprime

%o alst.append(sum(sum(map(int, str(p))) for p in f.keys()))

%o m += 1

%o return alst

%o print(aupton(81)) # _Michael S. Branicky_, Feb 05 2021

%Y Cf. A095402.

%K nonn,base

%O 1,1

%A _Juri-Stepan Gerasimov_, Apr 24 2010

%E a(13), a(34) etc. corrected by - _R. J. Mathar_, Apr 25 2010