login
A176648
a(n+1) = m + Sum_{j=0..n} (a(j)*a(n-j) + k) for n>=1, with a(0)=1, a(1)=5, k=1 and m=1.
3
1, 5, 13, 55, 245, 1215, 6317, 34187, 190093, 1079983, 6239989, 36554363, 216600357, 1295906671, 7817665373, 47499325915, 290411653437, 1785401003887, 11030252590149, 68444469966843, 426386709191893, 2665740642304879
OFFSET
0,2
LINKS
FORMULA
G.f.: (1 - sqrt(1 - 4*z*(a(0) + (a(1) - a(0)^2)*z + (k+m)*z^2/(1-z) + k*z^2/(1-z)^2)))/(2*z) with a(0) = k = m = 1 and a(1) = 5.
(n+1)*a(n) - (7*n-2)*a(n-1) - (n-11)*a(n-2) + (23*n-70)*a(n-3) - 24*(n-4)*a(n-4) + 8*(n-5)*a(n-5) = 0. - R. J. Mathar, Feb 29 2016
From G. C. Greubel, Jul 02 2021: (Start)
a(n) = m + k*n + Sum_{j=0..n-1} a(j)*a(n-j-1) with a(0) = m = k = 1 and a(1) = 5.
G.f.: (1-x -sqrt(1 -6*x -7*x^2 +16*x^3 -8*x^4))/(2*x*(1-x)). (End)
EXAMPLE
a(2) = 2*1*5 + 2 + 1 = 13.
a(3) = 2*1*13 + 2 + 5^2 + 1 + 1 = 55.
a(4) = 2*1*55 + 2 + 2*5*13 + 2 + 1 = 245.
MAPLE
# First program
m:=1: : k := 1 : a(0):=1 : a(1):=5:
for n from 1 to 51 do a(n+1):=sum(a(p)*a(n-p)+k, p=0..n) +m : od :
seq(a(n), n=0..40);
# Second program
n:= 40;
S:= series((1-x -sqrt(1 -6*x -7*x^2 +16*x^3 -8*x^4))/(2*x*(1-x)), x, n+1);
seq(coeff(S, x, j), j = 0..n); # modified by G. C. Greubel, Jul 02 2021
MATHEMATICA
a[n_, k_, m_]:= a[n, k, m]= If[n<2, 5^n, m +k*n +Sum[a[j, k, m]*a[n-j-1, k, m], {j, 0, n-1}]];
Table[a[n, 1, 1], {n, 0, 40}] (* G. C. Greubel, Jul 02 2021 *)
PROG
(Magma)
R<x>:=PowerSeriesRing(Rationals(), 40);
Coefficients(R!( (1-x -Sqrt(1 -6*x -7*x^2 +16*x^3 -8*x^4))/(2*x*(1-x)) )); // G. C. Greubel, Jul 02 2021
(Sage)
@CachedFunction
def a(n, k, m): return 5^n if (n<2) else m + k*n + sum(a(j, k, m)*a(n-j-1, k, m) for j in (0..n-1))
[a(n, 1, 1) for n in (0..40)] # G. C. Greubel, Jul 02 2021
CROSSREFS
Sequence in context: A149547 A149548 A363472 * A159489 A353287 A149549
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, Apr 22 2010
STATUS
approved