login
A176644
Triangle T(n, k) = 40^(k*(n-k)), read by rows.
4
1, 1, 1, 1, 40, 1, 1, 1600, 1600, 1, 1, 64000, 2560000, 64000, 1, 1, 2560000, 4096000000, 4096000000, 2560000, 1, 1, 102400000, 6553600000000, 262144000000000, 6553600000000, 102400000, 1, 1, 4096000000, 10485760000000000, 16777216000000000000, 16777216000000000000, 10485760000000000, 4096000000, 1
OFFSET
0,5
FORMULA
T(n, k, q) = c(n,q)/(c(k, q)*c(n-k, q)) where c(n, q) = (q*(3*q - 2))^binomial(n+1,2) and q = 4.
T(n, k, q) = (q*(3*q-2))^(k*(n-k)) with q = 4.
T(n, k, m) = (m+2)^(k*(n-k)) with m = 38. - G. C. Greubel, Jul 01 2021
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 40, 1;
1, 1600, 1600, 1;
1, 64000, 2560000, 64000, 1;
1, 2560000, 4096000000, 4096000000, 2560000, 1;
1, 102400000, 6553600000000, 262144000000000, 6553600000000, 102400000, 1;
MATHEMATICA
T[n_, k_, q_]:= (q*(3*q-2))^(k*(n-k)); Table[T[n, k, 4], {n, 0, 12}, {k, 0, n}]//Flatten
Table[(40)^(k*(n-k)), {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 01 2021 *)
PROG
(Magma) [40^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 01 2021
(Sage) flatten([[40^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 01 2021
CROSSREFS
Cf. A000567.
Cf. A176642 (q=2), A176643 (q=3), this sequence (q=4).
Cf. A117401 (m=0), A118180 (m=1), A118185 (m=2), A118190 (m=3), A158116 (m=4), A176642 (m=6), A158117 (m=8), A176627 (m=10), A176639 (m=13), A156581 (m=15), A176643 (m=19), A176631 (m=20), A176641 (m=26), this sequence (m=38).
Sequence in context: A013419 A013420 A156917 * A329337 A078084 A037937
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Apr 22 2010
EXTENSIONS
Edited by G. C. Greubel, Jul 01 2021
STATUS
approved