OFFSET
0,5
LINKS
G. C. Greubel, Rows n = 0..40 of the triangle, flattened
FORMULA
T(n, k, q) = c(n,q)/(c(k, q)*c(n-k, q)) where c(n, q) = (q*(3*q - 2))^binomial(n+1,2) and q = 4.
T(n, k, q) = (q*(3*q-2))^(k*(n-k)) with q = 4.
T(n, k, m) = (m+2)^(k*(n-k)) with m = 38. - G. C. Greubel, Jul 01 2021
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 40, 1;
1, 1600, 1600, 1;
1, 64000, 2560000, 64000, 1;
1, 2560000, 4096000000, 4096000000, 2560000, 1;
1, 102400000, 6553600000000, 262144000000000, 6553600000000, 102400000, 1;
MATHEMATICA
T[n_, k_, q_]:= (q*(3*q-2))^(k*(n-k)); Table[T[n, k, 4], {n, 0, 12}, {k, 0, n}]//Flatten
Table[(40)^(k*(n-k)), {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 01 2021 *)
PROG
(Magma) [40^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 01 2021
(Sage) flatten([[40^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 01 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Apr 22 2010
EXTENSIONS
Edited by G. C. Greubel, Jul 01 2021
STATUS
approved