OFFSET
0,5
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
T(n, k, q) = c(n,q)/(c(k, q)*c(n-k, q)) where c(n, q) = (q*(3*q - 2))^binomial(n+1,2) and q = 3.
T(n, k, q) = (q*(3*q-2))^(k*(n-k)) with q = 3.
T(n, k, m) = (m+2)^(k*(n-k)) with m = 19. - G. C. Greubel, Jul 01 2021
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 21, 1;
1, 441, 441, 1;
1, 9261, 194481, 9261, 1;
1, 194481, 85766121, 85766121, 194481, 1;
1, 4084101, 37822859361, 794280046581, 37822859361, 4084101, 1;
MATHEMATICA
T[n_, k_, q_]:= (q*(3*q-2))^(k*(n-k)); Table[T[n, k, 3], {n, 0, 12}, {k, 0, n}]//Flatten
Table[21^(k*(n-k)), {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 01 2021 *)
PROG
(Magma) [(21)^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 01 2021
(Sage) flatten([[(21)^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 01 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Apr 22 2010
EXTENSIONS
Edited by G. C. Greubel, Jul 01 2021
STATUS
approved