login
Triangle T(n, k) = 28^(k*(n-k)), read by rows.
9

%I #9 Sep 08 2022 08:45:53

%S 1,1,1,1,28,1,1,784,784,1,1,21952,614656,21952,1,1,614656,481890304,

%T 481890304,614656,1,1,17210368,377801998336,10578455953408,

%U 377801998336,17210368,1,1,481890304,296196766695424,232218265089212416,232218265089212416,296196766695424,481890304,1

%N Triangle T(n, k) = 28^(k*(n-k)), read by rows.

%H G. C. Greubel, <a href="/A176641/b176641.txt">Rows n = 0..50 of the triangle, flattened</a>

%F T(n, k, q) = c(n,q)/(c(k, q)*c(n-k, q)) where c(n, k) = Product_{j=1..n} (q*(2*q - 1))^j and q = 4.

%F From _G. C. Greubel_, Jun 30 2021: (Start)

%F T(n, k, q) = binomial(2*q, 2)^(k*(n-k)) with q = 4.

%F T(n, k, m) = (m+2)^(k*(n-k)) with m = 26.

%F T(n, k, p) = binomial(p+2, 2)^(k*(n-k)) with p = 6. (End)

%e Triangle begins as:

%e 1;

%e 1, 1;

%e 1, 28, 1;

%e 1, 784, 784, 1;

%e 1, 21952, 614656, 21952, 1;

%e 1, 614656, 481890304, 481890304, 614656, 1;

%e 1, 17210368, 377801998336, 10578455953408, 377801998336, 17210368, 1;

%t T[n_, k_, q_] = Binomial[2*q, 2]^(k*(n-k));

%t Table[T[n, k, 4], {n,0,12}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Jun 30 2021 *)

%t With[{m=26}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* _G. C. Greubel_, Jun 30 2021 *)

%o (Magma) [(28)^(k*(n-k)): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Jun 30 2021

%o (Sage) flatten([[(28)^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Jun 30 2021

%Y Cf. A000384.

%Y Cf. A158116 (q=2), A176639 (q=3), this sequence (q=4).

%Y Cf. A117401 (m=0), A118180 (m=1), A118185 (m=2), A118190 (m=3), A158116 (m=4), A176642 (m=6), A158117 (m=8), A176627 (m=10), A176639 (m=13), A156581 (m=15), A176643 (m=19), A176631 (m=20), this sequence (m=26).

%Y Cf. A007318 (p=0), A118180 (p=1), A158116 (p=2), A158117 (p=3), A176639 (p=4), A176643 (p=5), this sequence (p=6).

%K nonn,tabl

%O 0,5

%A _Roger L. Bagula_, Apr 22 2010

%E Edited by _G. C. Greubel_, Jun 30 2021