login
A176564
Triangle T(n,m)= binomial(2*n,m) + binomial(2*n,n-m) -binomial(2*n,n) read by rows.
1
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, -6, -14, -6, 1, 1, -32, -87, -87, -32, 1, 1, -120, -363, -484, -363, -120, 1, 1, -415, -1339, -2067, -2067, -1339, -415, 1, 1, -1414, -4742, -7942, -9230, -7942, -4742, -1414, 1, 1, -4844, -16643, -29240, -36992, -36992, -29240
OFFSET
0,5
COMMENTS
Row sums are 1, 2, 4, 4, -24, -236, -1448, -7640, -37424, -175436,... = 2*A032443(n) -A037965(n+1).
FORMULA
T(n,m) = T(n,n-m).
EXAMPLE
The triangle starts in row n=0 with columns 0<=m<=n as:
1;
1, 1;
1, 2, 1;
1, 1, 1, 1;
1, -6, -14, -6, 1;
1, -32, -87, -87, -32, 1;
1, -120, -363, -484, -363, -120, 1;
1, -415, -1339, -2067, -2067, -1339, -415, 1;
1, -1414, -4742, -7942, -9230, -7942, -4742, -1414, 1;
1, -4844, -16643, -29240, -36992, -36992, -29240, -16643, -4844, 1;
1, -16776, -58596, -106096, -141151, -153748, -141151, -106096, -58596, -16776, 1;
MAPLE
A176564 := proc(n, m) binomial(2*n, m)+binomial(2*n, n-m) -binomial(2*n, n) ; end proc:
MATHEMATICA
t[n_, m_] = Binomial[2*n, m] + Binomial[2*n, n - m] - (Binomial[2*n, 0] + Binomial[2*n, n]) + 1;
Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}];
Flatten[%]
CROSSREFS
Sequence in context: A373201 A119335 A155869 * A237717 A154338 A087436
KEYWORD
sign,tabl,easy
AUTHOR
Roger L. Bagula, Apr 20 2010
STATUS
approved