login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A176491 Triangle T(n,k) = binomial(n,k) + A176490(n,k) - 1 read along rows 0<=k<=n. 2
1, 1, 1, 1, 10, 1, 1, 35, 35, 1, 1, 104, 300, 104, 1, 1, 297, 1992, 1992, 297, 1, 1, 846, 11747, 25982, 11747, 846, 1, 1, 2431, 64969, 275375, 275375, 64969, 2431, 1, 1, 7060, 346246, 2573576, 4831272, 2573576, 346246, 7060, 1, 1, 20693, 1804214, 22163246 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Row sums are 1, 2, 12, 72, 510, 4580, 51170, 685552, 10685038, 189423852, 3755809002,....

LINKS

Table of n, a(n) for n=0..48.

EXAMPLE

1;

1, 1;

1, 10, 1;

1, 35, 35, 1;

1, 104, 300, 104, 1;

1, 297, 1992, 1992, 297, 1;

1, 846, 11747, 25982, 11747, 846, 1;

1, 2431, 64969, 275375, 275375, 64969, 2431, 1;

1, 7060, 346246, 2573576, 4831272, 2573576, 346246, 7060, 1;

1, 20693, 1804214, 22163246, 70723772, 70723772, 22163246, 1804214, 20693, 1;

1, 61082, 9268821, 180504510, 916661604, 1542816966, 916661604, 180504510, 9268821, 61082, 1;

MAPLE

A176491 := proc(n, k)

        A176490(n, k)+binomial(n, k)-1 ;

end proc: # R. J. Mathar, Jun 16 2015

MATHEMATICA

(*A060187*)

p[x_, n_] = (1 - x)^(n + 1)*Sum[(2*k + 1)^n*x^k, {k, 0, Infinity}];

f[n_, m_] := CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m + 1]];

<< DiscreteMath`Combinatorica`;

t[n_, m_, 0] := Binomial[n, m];

t[n_, m_, 1] := Eulerian[1 + n, m];

t[n_, m_, 2] := f[n, m];

t[n_, m_, q_] := t[n, m, q] = t[n, m, q - 2] + t[n, m, q - 3] - 1;

Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 0, 10}]

CROSSREFS

Cf. A007318, A008292, A060187, A176487.

Sequence in context: A154984 A173047 A173045 * A008958 A168524 A157277

Adjacent sequences:  A176488 A176489 A176490 * A176492 A176493 A176494

KEYWORD

nonn,tabl,easy

AUTHOR

Roger L. Bagula, Apr 19 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 18 19:06 EST 2017. Contains 294894 sequences.