|
|
|
|
2, 4, 9, 12, 22, 18, 38, 16, 93, 45, 62, 70, 44, 63, 36, 52, 64, 102, 48, 68, 84, 76, 90, 142, 146, 117, 81, 166, 174, 178, 126, 80, 150, 132, 116, 230, 124, 100, 156, 246, 266, 258, 254, 148, 112
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
My 1981 publication studies A064380 with the quite natural convention A064380(1)=1. So a(1) could alternatively be defined as 1. By the definitions, it is clear that A064380(m) >= A000010(m).
Theorem. For every n>=0, the equation A064380(m)-A000010(m)=n has infinitely many solutions.
|
|
REFERENCES
|
V. S. Abramovich(Shevelev), On an analog of the Euler function, Proceeding of the North-Caucasus Center of the Academy of Sciences of the USSR (Rostov na Donu), 2 (1981), 13-17.
V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43.
|
|
LINKS
|
Amiram Eldar, Table of n, a(n) for n = 0..1000
S. Litsyn and V. S. Shevelev, On factorization of integers with restrictions on the exponent, INTEGERS: Electronic Journal of Combinatorial Number Theory, 7 (2007), #A33, 1-36.
|
|
MAPLE
|
A176472 := proc(n) local m; for m from 2 do if A064380(m) - numtheory[phi](m) = n then return m; end if; end do: end proc: # R. J. Mathar, Jun 16 2010
|
|
CROSSREFS
|
Cf. A000010, A064380, A050376, A050292.
Sequence in context: A092530 A154891 A282456 * A139557 A103690 A098009
Adjacent sequences: A176469 A176470 A176471 * A176473 A176474 A176475
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Vladimir Shevelev, Apr 18 2010
|
|
EXTENSIONS
|
a(2), a(3), a(8) and a(15) corrected and sequence extended by R. J. Mathar, Jun 16 2010
|
|
STATUS
|
approved
|
|
|
|