This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A176469 A symmetrical triangle:q=4;c(n,q)=Product[1 - q^i, {i, 1, n}];t(n,m,q)=A060187(n,m)-c(n,q)/(c(m,q)*c(n-m,q))+1 0
 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, -8, -126, -8, 1, 1, -103, -4114, -4114, -103, 1, 1, -642, -82549, -353256, -82549, -642, 1, 1, -3281, -1430195, -23948889, -23948889, -1430195, -3281, 1, 1, -15292, -23527496, -1548356796, -6216938526 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Row sums are: {1, 2, 4, 8, -140, -8432, -519636, -50764728, -9360737692, -3387701237632, -246332974040099,...}. LINKS FORMULA q=4; c(n,q)=Product[1 - q^i, {i, 1, n}]; t(n,m,q)=A060187(n,m)-c(n,q)/(c(m,q)*c(n-m,q))+1 EXAMPLE {1}, {1, 1}, {1, 2, 1}, {1, 3, 3, 1}, {1, -8, -126, -8, 1}, {1, -103, -4114, -4114, -103, 1}, {1, -642, -82549, -353256, -82549, -642, 1}, { 1, -3281, -1430195, -23948889, -23948889, -1430195, -3281, 1}, {1, -15292, -23527496, -1548356796, -6216938526, -1548356796, -23527496, -15292, 1}, {1, -67707, -380011248, -99256044576, -1594214495286, -1594214495286, -99256044576, -380011248, -67707, 1}, {1, -290486, -6099252663, -6353979629820, -408235051426002, -1634139479203056, -408235051426002, -6353979629820, -6099252663, -290486, 1} MATHEMATICA (*A060187*); p[x_, n_] = (1 - x)^(n + 1)*Sum[(2*k + 1)^n*x^k, {k, 0, Infinity}]; f[n_, m_] := CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m + 1]]; c[n_, q_] = Product[1 - q^i, {i, 1, n}]; t[n_, m_, q_] := f[n, m] - c[n, q]/(c[m, q]*c[n - m, q]) + 1; Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 2, 12}] CROSSREFS Cf. A060187 Sequence in context: A124975 A171246 A129439 * A141542 A129453 A129455 Adjacent sequences:  A176466 A176467 A176468 * A176470 A176471 A176472 KEYWORD sign,tabl,uned AUTHOR Roger L. Bagula, Apr 18 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .