OFFSET
1,2
COMMENTS
The corresponding values of x of this Pell equation are in A176368.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..200
Index entries for linear recurrences with constant coefficients, signature (258,-1).
FORMULA
a(n) = 258*a(n-1) - a(n-2) with a(0)=0, a(1)=16.
G.f.: 16*x^2/(1-258*x+x^2).
MAPLE
seq(coeff(series(16*x^2/(1-258*x+x^2), x, n+1), x, n), n = 1..15); # G. C. Greubel, Dec 08 2019
MATHEMATICA
LinearRecurrence[{258, -1}, {0, 16}, 20] (* Harvey P. Dale, Aug 20 2011 *)
PROG
(Magma) I:=[0, 16]; [n le 2 select I[n] else 258*Self(n-1)-Self(n-2): n in [1..20]];
(PARI) my(x='x+O('x^15)); concat([0], Vec(16*x^2/(1-258*x+x^2))) \\ G. C. Greubel, Dec 08 2019
(Sage)
def A176369_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 16*x^2/(1-258*x+x^2) ).list()
a=A176369_list(15); a[1:] # G. C. Greubel, Dec 08 2019
(GAP) a:=[1, 16];; for n in [3..15] do a[n]:=258*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 08 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Apr 16 2010
EXTENSIONS
Partially corrected and edited by Michael B. Porter and N. J. A. Sloane, Jun 22 2010
STATUS
approved