This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A176355 Periodic sequence: Repeat 6, 1. 1
 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Interleaving of A010722 and A000012. Also continued fraction expansion of 3+sqrt(15). Also decimal expansion of 61/99. a(n) = A010687(n+1). Essentially first differences of A047335. Binomial transform of 6 followed by A166577 without initial terms 1, 4. Inverse binomial transform of A005009 preceded by 6. LINKS FORMULA a(n) = (7+5*(-1)^n)/2. a(n) = a(n-2) for n > 1; a(0) = 6, a(1) = 1. a(n) = -a(n-1)+7 for n > 0; a(0) = 6. a(n) = 6*((n+1) mod 2)+(n mod 2). G.f.: (6+x)/(1-x^2). PROG (MAGMA) &cat[ [6, 1]: n in [0..52] ]; [ (7+5*(-1)^n)/2: n in [0..104] ]; CROSSREFS Cf. A010722 (all 6's sequence), A000012 (all 1's sequence), A092294 (decimal expansion of 3+sqrt(15), A010687 (repeat 1, 6), A047335 (congruent to 0 or 6 mod 7), A166577, A005009 (7*2^n). Sequence in context: A023406 A138116 A010687 * A109918 A096956 A078300 Adjacent sequences:  A176352 A176353 A176354 * A176356 A176357 A176358 KEYWORD cofr,cons,easy,nonn,mult AUTHOR Klaus Brockhaus, Apr 15 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .