login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A176303 a(n) = abs(2^n-127). 5
126, 125, 123, 119, 111, 95, 63, 1, 129, 385, 897, 1921, 3969, 8065, 16257, 32641, 65409, 130945, 262017, 524161, 1048449, 2097025, 4194177, 8388481, 16777089, 33554305, 67108737, 134217601, 268435329, 536870785, 1073741697, 2147483521, 4294967169 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

REFERENCES

R. K. Guy, Unsolved problems in number theory, Vol.1, 1994, Springer-Verlag,pages 42-43.

LINKS

Indranil Ghosh, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (3,-2).

FORMULA

From Colin Barker, Feb 20 2017: (Start)

a(n) = 2^n - 127 for n>6.

a(n) = 3*a(n-1) - 2*a(n-2) for n>8.

G.f.: (126 - 253*x + 2*x^7 + 252*x^8) / ((1 - x)*(1 - 2*x)).

(End)

EXAMPLE

a(2) = abs(2^2-127) = abs(4-127) = abs(-123) = 123. - Indranil Ghosh, Feb 20 2017

MATHEMATICA

Table[Abs[2^n-127], {n, 0, 32}] (* or *) CoefficientList[Series[(126 - 253*x + 2*x^7 + 252*x^8) / ((1 - x)*(1 - 2*x)) , {x, 0, 30}], x] (* Indranil Ghosh, Feb 20 2017 *)

PROG

(Python) def A176303(n): return abs(2**n-127) # Indranil Ghosh, Feb 20 2017

(PARI) Vec((126 - 253*x + 2*x^7 + 252*x^8) / ((1 - x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, Feb 20 2017

(PARI) a(n)=abs(2^n-127) \\ Charles R Greathouse IV, Feb 20 2017

CROSSREFS

See A175347, A169716 for primes.

Sequence in context: A267342 A278935 A267395 * A157321 A100730 A044876

Adjacent sequences:  A176300 A176301 A176302 * A176304 A176305 A176306

KEYWORD

nonn,easy

AUTHOR

Vladimir Shevelev, Apr 14 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 19 16:10 EST 2017. Contains 294936 sequences.