login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A176281 Hankel transform of A176280. 2
1, 3, 12, 56, 280, 1440, 7488, 39104, 204544, 1070592, 5604864, 29345792, 153653248, 804532224, 4212572160, 22057287680, 115493404672, 604731211776, 3166413520896, 16579556016128, 86811681488896, 454551863820288 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (8,-16,8).

FORMULA

G.f.: (1-5*x+4*x^2)/(1-8*x+16*x^2-8*x^3) = (1-5*x+4*x^2)/((1-2*x)*(1-6*x+4*x^2)).

a(n) = 2^(n-1) + (3-sqrt(5))^n*((5-sqrt(5))/20) + (3+sqrt(5))^n*((5+sqrt(5))/20).

a(n) = 2^(n-1) + A082761(n)/2. - R. J. Mathar, Sep 30 2012

a(0)=1, a(1)=3, a(2)=12, a(n) = 8*a(n-1) - 16*a(n-2) + 8*a(n-3). - Harvey P. Dale, Aug 14 2013

a(n) = 2^(n-1)*(Fibonacci(2*n+1) + 1). - G. C. Greubel, Nov 24 2019

MAPLE

with(combinat); seq(2^(n-1)*(fibonacci(2*n+1) + 1), n=0..30); # G. C. Greubel, Nov 24 2019

MATHEMATICA

CoefficientList[Series[(1-5x+4x^2)/((1-2x)(1-6x+4x^2)), {x, 0, 40}], x] (* or *) LinearRecurrence[{8, -16, 8}, {1, 3, 12}, 40] (* Harvey P. Dale, Aug 14 2013 *)

PROG

(PARI) vector(31, n, 2^(n-2)*(fibonacci(2*n-1) + 1)) \\ G. C. Greubel, Nov 24 2019

(MAGMA) [2^(n-1)*(Fibonacci(2*n+1) + 1): n in [0..30]]; G. C. Greubel, Nov 24 2019

(Sage) [2^(n-1)*(fibonacci(2*n+1) + 1) for n in (0..30)] # G. C. Greubel, Nov 24 2019

(GAP) List([0..30], n-> 2^(n-1)*(Fibonacci(2*n+1) + 1)); # G. C. Greubel, Nov 24 2019

CROSSREFS

Cf. A000045.

Sequence in context: A185630 A284843 A107318 * A050147 A259800 A120921

Adjacent sequences:  A176278 A176279 A176280 * A176282 A176283 A176284

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Apr 14 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 1 04:37 EDT 2020. Contains 334758 sequences. (Running on oeis4.)