login
A176267
a(n) = binomial(prime(n),s)/prime(n) where s is the sum of the decimal digits of prime(n).
1
5, 55, 1430, 4862, 1463, 1193010, 1015, 9414328, 18278, 749398, 370577311, 16723070, 225398683020, 7151980, 378683037040, 149846840, 8511300512, 272994644359580, 194480021970, 8516063242041795, 8175951659117794, 50, 42925, 3046258475, 391139588190, 1242164, 1646644081775, 2271776, 38642514470976, 4683175503770976
OFFSET
5,1
COMMENTS
Note that a(n) is always an integer, as binomial(p,s) = p! / ((p-s)!/s!) is always divisible by p for prime p because neither (p-s)! nor s! can contain a factor of p when 0 < s < p, which occurs when n >= 5. By contrast, for n < 5, p(n) < 10, the sum of digits is p(n) itself, and the result is 1/p(n).
EXAMPLE
For n = 6, prime(6) = 13, s = 1+3 = 4 and binomial(13, 4)/13 = 715/13 = 55.
MAPLE
A007605 := proc(n) A007953(ithprime(n)) ; end proc:
A176267 := proc(n) local p; p := ithprime(n) ; binomial(p, A007605(n))/p ; end proc:
seq(A176267(n), n=5..20) ;
MATHEMATICA
pn[n_]:=Module[{pr=Prime[n]}, Binomial[pr, Total[IntegerDigits[pr]]]/pr]; Array[pn, 40, 5] (* Harvey P. Dale, Mar 29 2012 *)
PROG
(Sage) A176267 = lambda n: binomial(nth_prime(n), sum(nth_prime(n).digits()))/nth_prime(n) # D. S. McNeil, Dec 08 2010
CROSSREFS
Sequence in context: A177819 A126456 A126157 * A105715 A111821 A275546
KEYWORD
nonn,base
AUTHOR
Michel Lagneau, Dec 07 2010
STATUS
approved