OFFSET
0,1
COMMENTS
Also continued fraction expansion of (5+3*sqrt(5))/2.
Also decimal expansion of 17/33.
Essentially first differences of A047264.
Binomial transform of 5 followed by -A122803 without initial terms 1, -2.
Inverse binomial transform of 5 followed by A007283 without initial term 3.
Second inverse binomial transform of A168607 without initial term 3.
Exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 3*x^2 + 3*x^3 + 6*x^4 + 6*x^5 + ... is the o.g.f. for A008805. - Peter Bala, Mar 13 2015
LINKS
FORMULA
a(n) = 3+2*(-1)^n.
a(n) = a(n-2) for n > 1; a(0) = 5, a(1) = 1.
a(n) = -a(n-1)+6 for n > 0; a(0) = 5.
a(n) = 5*((n+1) mod 2)+(n mod 2).
a(n) = A010686(n+1).
G.f.: (5+x)/(1-x^2).
From Amiram Eldar, Jan 01 2023: (Start)
Multiplicative with a(2^e) = 5, and a(p^e) = 1 for p >= 3.
Dirichlet g.f.: zeta(s)*(1+2^(2-s)). (End)
PROG
(Magma) &cat[ [5, 1]: n in [0..52] ];
[ 3+2*(-1)^n: n in [0..104] ];
CROSSREFS
KEYWORD
AUTHOR
Klaus Brockhaus, Apr 13 2010
STATUS
approved