%I #10 Feb 19 2019 03:43:26
%S 2,1,1,1,1,11,11,12,12,79,79,347,347,5541,5541,-9206,-9206,3307613,
%T 3307613,-78393123,-78393123,932396477,932396477,-127419293864,
%U -127419293864,6013748071263,6013748071263
%N Numerators of the fractions defined by 2 minus partial sums of the "original" Bernoulli numbers.
%C We define the sequence f(n) = 2, 1, 1/2, 1/3, 1/3, 11/30, 11/30, ... for n >= 0 as 2-Sum_{i=0..n-1} A164555(i)/A027642(i). The current sequence shows the numerators of f.
%C Comparison with a similar sequence of fractions g(n) = A100649(n)/A100650(n): f(n) = g(n-1) - 1 for n > 1.
%p B := proc(n) if n = 1 then -bernoulli(n); else bernoulli(n); end if; end proc:
%p A176250 := proc(n) 2-add(B(i),i=0..n-1) ; numer(%) ;end proc:
%p seq(A176250(n),n=0..40) ; # _R. J. Mathar_, Jun 01 2011
%Y Cf. A100650 (denominators), A164555, A027642.
%K sign,frac
%O 0,1
%A _Paul Curtz_, Apr 13 2010