This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A176244 A q-form recursion triangular sequence:q=4:t(n,k)=t(n - 1, k - 1) + q^k*t(n - 1, k). 0
 1, 1, 1, 1, 17, 1, 1, 273, 81, 1, 1, 4369, 5457, 337, 1, 1, 69905, 353617, 91729, 1361, 1, 1, 1118481, 22701393, 23836241, 1485393, 5457, 1, 1, 17895697, 1454007633, 6124779089, 1544878673, 23837265, 21841, 1, 1, 286331153, 93074384209 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS Row sums are: {1, 2, 19, 356, 10165, 516614, 49146967, 9165420200, 3350402793721, 2449781908163402,...} REFERENCES Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), page 176 LINKS FORMULA q=4:t(n,k)=t(n - 1, k - 1) + q^k*t(n - 1, k). EXAMPLE {1}, {1, 1}, {1, 17, 1}, {1, 273, 81, 1}, {1, 4369, 5457, 337, 1}, {1, 69905, 353617, 91729, 1361, 1}, {1, 1118481, 22701393, 23836241, 1485393, 5457, 1}, {1, 17895697, 1454007633, 6124779089, 1544878673, 23837265, 21841, 1}, {1, 286331153, 93074384209, 1569397454417, 1588080540241, 99182316113, 381680209, 87377, 1}, {1, 4581298449, 5957046920529, 401858822714961, 1627763870661201, 407838847339089, 6352630860369, 6108019281, 349521, 1} MATHEMATICA Clear[A, n, k, q]; q = 4; A[n_, 1] := 1; A[n_, n_] := 1; A[n_, k_] := A[n, k] = A[n - 1, k - 1] + q^k*A[n - 1, k]; a = Table[A[n, k], {n, 1, 10}, {k, 1, n}]; Flatten[a] CROSSREFS Sequence in context: A144442 A157151 A176794 * A022180 A156581 A015143 Adjacent sequences:  A176241 A176242 A176243 * A176245 A176246 A176247 KEYWORD nonn,tabl,uned AUTHOR Roger L. Bagula, Apr 12 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 23 18:06 EDT 2019. Contains 322387 sequences. (Running on oeis4.)