login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A176222 a(n) = (n^2 - 3*n + 1 + (-1)^n)/2. 9
0, 3, 5, 10, 14, 21, 27, 36, 44, 55, 65, 78, 90, 105, 119, 136, 152, 171, 189, 210, 230, 253, 275, 300, 324, 351, 377, 406, 434, 465, 495, 528, 560, 595, 629, 666, 702, 741, 779, 820, 860, 903, 945, 990, 1034, 1081, 1127, 1176, 1224, 1275, 1325, 1378, 1430 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,2

COMMENTS

Let I = I_n be the n X n identity matrix and P = P_n be the incidence matrix of the cycle (1,2,3,...,n).

Let T = P^(-1)+I+P.

11000...01

11100....0

01110.....

00111.....

..........

00.....111

10.....011

Then a(n) is the number of (0,1) n X n matrices A <= T (i.e., an element of A can be 1 only if T has a 1 at this place) having exactly two 1's in every row and column with per(A) = 4.

a(n) is the maximum number m such that m white kings and m black kings can coexist on an n+1 X n+1 chessboard without attacking each other. - Aaron Khan, Jul 05 2022

REFERENCES

V. S. Shevelyov (Shevelev), Extension of the Moser class of four-line Latin rectangles, DAN Ukrainy, 3 (1992), 15-19.

LINKS

G. C. Greubel, Table of n, a(n) for n = 3..1000

Paul Barry, On sequences with {-1, 0, 1} Hankel transforms, arXiv preprint arXiv:1205.2565 [math.CO], 2012.

Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).

FORMULA

a(n) = (n - t(n))*(n - 3 + t(n))/2, where t(n) = 1-(n mod 2).

G.f.: x^4*(3-x)/( (1+x)*(1-x)^3 ). - R. J. Mathar, Mar 06 2011

From Bruno Berselli, Sep 13 2011: (Start)

a(n) + a(n+1) = A005563(n-2).

a(-n) = A084265(n). (End)

a(n) = 1 -2*n +floor(n/2) +floor(n^2/2). - Wesley Ivan Hurt, Jun 14 2013

From Wesley Ivan Hurt, May 25 2015: (Start)

a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4), n>4.

a(n) = Sum_{i=(-1)^n..n-2} i. (End)

a(n) = A174239(n-2) * A174239(n-1). - Paul Curtz, Jul 17 2017

With offset 0, this is ceiling(n/2)*(2*floor(n/2)+3). - N. J. A. Sloane, Jan 16 2020

E.g.f.: (1/2)*((1-x)*exp(x/2) - exp(-x/2))^2. - G. C. Greubel, Mar 22 2022

EXAMPLE

For n=5 the reference matrix is:

11001

11100

01110

00111

10011

There are 2^(3*n) = 32768 0-1 matrices obtained from removing one or more 1's in it.

There are 305 such matrices with permanent 4 and there are 13 such matrices with exactly two 1's in every column and every row.

There are 5 matrices having both properties. One of them is:

10001

01100

01100

00011

10010

From Aaron Khan, Jul 05 2022: (Start)

Examples of the sequence when used for kings on a chessboard:

.

A solution illustrating a(2)=3:

+-------+

| B B B |

| . . . |

| W W W |

+-------+

.

A solution illustrating a(3)=5:

+---------+

| B B B B |

| B . . . |

| . . . W |

| W W W W |

+---------+

(End)

MAPLE

A176222:=n->(n^2-3*n+1+(-1)^n)/2: seq(A176222(n), n=3..100); # Wesley Ivan Hurt, May 25 2015

MATHEMATICA

Table[(n^2 - 3*n + 1 + (-1)^n)/2, {n, 3, 100}] (* or *) CoefficientList[Series[x (x - 3)/((1 + x)*(x - 1)^3), {x, 0, 30}], x] (* Wesley Ivan Hurt, May 25 2015 *)

PROG

(Magma) [(n^2-3*n+1+(-1)^n)/2: n in [3..100]]; // Vincenzo Librandi, Mar 24 2011

(PARI) a(n)=(n^2-3*n+1+(-1)^n)/2 \\ Charles R Greathouse IV, Oct 16 2015

(Sage) [n*(n-3)/2 + ((n+1)%2) for n in (3..60)] # G. C. Greubel, Mar 22 2022

CROSSREFS

Cf. A000211, A052928, A128209, A250000 (queens on a chessboard), A002620 (rooks on a chessboard), A355509 (knights on a chessboard).

Sequence in context: A308805 A001841 A266793 * A008610 A281688 A078411

Adjacent sequences: A176219 A176220 A176221 * A176223 A176224 A176225

KEYWORD

nonn,easy

AUTHOR

Vladimir Shevelev, Apr 12 2010

EXTENSIONS

Matrix class definition checked, edited and illustrated by Olivier Gérard, Mar 26 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 19:04 EST 2022. Contains 358588 sequences. (Running on oeis4.)