login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A176203 A recursive symmetrical triangular sequence:q=4: t(n, m, q) = 2*t(n, m, q - 1) - 1 0
1, 1, 1, 1, 17, 1, 1, 33, 33, 1, 1, 49, 81, 49, 1, 1, 65, 145, 145, 65, 1, 1, 81, 225, 305, 225, 81, 1, 1, 97, 321, 545, 545, 321, 97, 1, 1, 113, 433, 881, 1105, 881, 433, 113, 1, 1, 129, 561, 1329, 2001, 2001, 1329, 561, 129, 1, 1, 145, 705, 1905, 3345, 4017, 3345, 1905 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

q = 0 : A007318;

q = 1 : A109128;

q = 2 : A131061;

q = 3 : A168625;

Row sums are:

{1, 2, 19, 68, 181, 422, 919, 1928, 3961, 8042, 16219,...}.

LINKS

Table of n, a(n) for n=0..62.

FORMULA

q=4: t(n, m, q) = 2*t(n, m, q - 1) - 1

EXAMPLE

{1},

{1, 1},

{1, 17, 1},

{1, 33, 33, 1},

{1, 49, 81, 49, 1},

{1, 65, 145, 145, 65, 1},

{1, 81, 225, 305, 225, 81, 1},

{1, 97, 321, 545, 545, 321, 97, 1},

{1, 113, 433, 881, 1105, 881, 433, 113, 1},

{1, 129, 561, 1329, 2001, 2001, 1329, 561, 129, 1},

{1, 145, 705, 1905, 3345, 4017, 3345, 1905, 705, 145, 1}

MATHEMATICA

t[n_, m_, 0] := Binomial[n, m];

t[n_, m_, 1] := 2*Binomial[n, m] - 1;

t[n_, m_, q_] := t[n, m, q] = 2*t[n, m, q - 1] - 1;

Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 0, 10}]

CROSSREFS

Cf. A007318, A109128, A131061, A168625

Sequence in context: A201134 A040289 A190580 * A103637 A229956 A157274

Adjacent sequences:  A176200 A176201 A176202 * A176204 A176205 A176206

KEYWORD

nonn,tabl,uned

AUTHOR

Roger L. Bagula, Apr 11 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 19 11:10 EDT 2019. Contains 321329 sequences. (Running on oeis4.)