This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A176196 Primes such that the sum of k-th powers of digits, for each of k = 1, 2, 3, and 4, is also a prime. 1
 11, 101, 113, 131, 223, 311, 353, 461, 641, 661, 883, 1013, 1031, 1103, 1301, 1439, 1451, 1471, 1493, 1697, 1741, 2111, 2203, 3011, 3347, 3491, 3659, 4139, 4337, 4373, 4391, 4733, 4931, 5303, 5639, 5693, 6197, 6359, 6719, 6791, 6917, 6971, 7411, 7433 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS For k = 1, 2, and 3 see A176179 REFERENCES Charles W. Trigg, Journal of Recreational Mathematics, Vol. 20(2), 1988. "Hands On Numbers Count", Personal Computer World, 1997, p. 290. LINKS Harvey P. Dale, Table of n, a(n) for n = 1..1000 EXAMPLE For the prime number n=14549 we obtain : 1 + 4 + 5 + 4 + 9 = 23 ; 1^2 +4^2 + 5^2 +4^2 + 9^2 = 139 ; 1^3 +4^3 + 5^3 +4^3 + 9^3 = 983 ; 1^4 +4^4 + 5^4 +4^4 + 9^4 = 7699 ; MAPLE with(numtheory):for n from 2 to 20000 do:l:=evalf(floor(ilog10(n))+1):n0:=n:s1:=0:s2:=0:s3:=0:s4:=0:for m from 1 to l do:q:=n0:u:=irem(q, 10):v:=iquo(q, 10):n0:=v :s1:=s1+u:s2:=s2+u^2:s3:=s3+u^3:s4:=s4+u^4:od:if type(n, prime)=true and type(s1, prime)=true and type(s2, prime)=true and type(s3, prime)=true and type(s4, prime)=true then print(n):else fi:od: MATHEMATICA Select[Prime[Range[1000]], And@@PrimeQ[Total/@Table[IntegerDigits[#]^n, {n, 4}]]&] (* Harvey P. Dale, Jun 16 2013 *) CROSSREFS Cf. A176179, A109181, A046704, A052034, A091366. Sequence in context: A073064 A155075 A176179 * A303570 A208262 A062696 Adjacent sequences:  A176193 A176194 A176195 * A176197 A176198 A176199 KEYWORD nonn,base AUTHOR Michel Lagneau, Apr 11 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 20 15:59 EDT 2019. Contains 325185 sequences. (Running on oeis4.)