

A176176


Numbers n such that (2^(n1) mod n)=(4^(n1) mod n).


2



1, 2, 3, 4, 5, 7, 8, 11, 13, 16, 17, 19, 23, 28, 29, 31, 32, 37, 41, 43, 47, 53, 59, 61, 64, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 112, 113, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Numbers n such that A062173(n)=A062175(n).
Question: is the sequence (Powers of 2) UNION (odd primes), the union of A000079 and A005408?
The answer to the question is No: 2^(281) mod 28 = 4^(281) mod 28 = 8. Also, any base2 Fermat pseudoprime (A001567) is a member of this sequence.  D. S. McNeil, Dec 07 2010


LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..10000


MATHEMATICA

Select[Range[200], PowerMod[2, #1, #]==PowerMod[4, #1, #]&] (* Harvey P. Dale, Nov 10 2011 *)


CROSSREFS

Cf. A000079, A005408, A062173.
Sequence in context: A081730 A162408 A162721 * A174090 A280083 A020902
Adjacent sequences: A176173 A176174 A176175 * A176177 A176178 A176179


KEYWORD

nonn


AUTHOR

JuriStepan Gerasimov, Dec 07 2010


EXTENSIONS

Extended by D. S. McNeil, Dec 07 2010


STATUS

approved



