login
A176165
Primes p such that (p-2)/11 is not a prime number.
1
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281
OFFSET
1,1
COMMENTS
The old definition was "Start with the list of primes; accept 2 but remove the list of primes S(2); accept the next prime (3) but remove the list of primes S(3); repeat".
If p is a prime, S(p) denotes the list of primes {11*p+2, 11(11*p+2)+2, 11(11(11*p+2)+2)+2, ...}, stopping as soon as we reach the first composite number.
LINKS
MATHEMATICA
Select[Prime[Range[60]], !PrimeQ[(# - 2)/11] &] (* Vincenzo Librandi, Feb 24 2013 *)
PROG
(Magma) [p: p in PrimesUpTo(300)| not IsPrime((p-2)/11)]; // Vincenzo Librandi, Feb 24 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Vincenzo Librandi, Apr 10 2010
EXTENSIONS
New definition from Jon E. Schoenfield, Jun 18 2010
STATUS
approved