%I #30 Jun 22 2017 14:33:34
%S 1,1,2,3,4,8,6,15,14,14,10,61,12,25,33,142,16,203,18,266,94,127,22
%N Number of isomorphism classes of homogeneous quandles of order n.
%C A homogeneous quandle is a quandle whose automorphism group acts transitively on the elements of the quandle.
%H David Joyce, <a href="http://dx.doi.org/10.1016/0022-4049(82)90077-9">A classifying invariant of knots, the knot quandle</a>, J. Pure Appl. Algebra 23 (1982) 37-65
%H Sam Nelson, <a href="http://www1.cmc.edu/pages/faculty/VNelson/quandles.html">Quandles and Racks</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Quandles">Quandles</a>.
%e a(2) = 1 since for order 2 there is only the trivial quandle with product x*y=x for all x,y. The trivial quandle has automorphism group S_2 which acts transitively on the two element quandle.
%Y Cf. A181771, A181769.
%K nonn,hard,more
%O 1,3
%A _W. Edwin Clark_, Dec 06 2010
%E More terms from _James McCarron_, Aug 26 2011