login
A175994
Decimal expansion of the definite integral of y=x^(1/x) for x=0 to e, the only maximum of this graph.
1
2, 6, 6, 1, 8, 2, 5, 7, 0, 5, 3, 8, 0, 4, 1, 7, 8, 2, 8, 4, 9, 7, 0, 3, 9, 3, 3, 7, 6, 5, 1, 3, 9, 5, 8, 3, 0, 2, 1, 4, 9, 7, 0, 8, 2, 0, 9, 8, 3, 3, 0, 3, 5, 4, 8, 2, 1, 4, 6, 7, 8, 4, 8, 5, 0, 9, 1, 4, 7, 0, 2, 1, 0, 6, 5, 7, 1, 7, 5, 1, 6, 6, 2, 4, 6, 8, 2, 8, 2, 9, 3, 5, 6, 2, 4, 3, 5, 1, 4, 0
OFFSET
1,1
LINKS
J. Sondow and D. Marques, Algebraic and transcendental solutions of some exponential equations, Annales Mathematicae et Informaticae 37 (2010) 151-164; see Figure 5.
EXAMPLE
2.6618257053804178284970393376513958302149708209833035482146784850914702106571...
MATHEMATICA
RealDigits[ NIntegrate[ x^(1/x), {x, 0, E}, WorkingPrecision -> 105]][[1]] (* Jean-François Alcover, Nov 07 2012 *)
CROSSREFS
Cf. A073229 (decimal expansion of e^(1/e)).
Sequence in context: A200485 A201318 A242001 * A372985 A340212 A283613
KEYWORD
cons,nonn
AUTHOR
Dylan Hamilton, Nov 05 2010
STATUS
approved