login
A175923
Index of the first occurrence of prime(n)-1 consecutive zeros in the sequence of Bell numbers reduced modulo the n-th prime prime(n).
0
2, 8, 587, 114382, 25678050356, 23136292864687, 48471109094902544777, 103805969587115219182432, 905970719001665604796396056038, 88427967009378444685165002293032443131447, 550006721989970936444120719825244586583663666, 285053798960048163188843790902665241600662702868793966427
OFFSET
1,1
LINKS
John W. Layman, Maximum Zero Strings of Bell Numbers Modulo Primes, J. Combin. Theory, Series A, 40 (1985) 161-168.
FORMULA
a(n) = (p^p - 1)/(p - 1) + 1 - (p^p - p)/(p - 1)^2, where p is the n-th prime.
EXAMPLE
The Bell numbers, A000110, begin {1,1,2,5,15,52,203,877,4140,21147,115975,...} for n=0,1,2,...; modulo the second prime prime(2)=3, these are {1,1,2,2,0,1,2,1,0,0,1, ...}, with the first prime(2)-1=2 consecutive zeros beginning at n=8. Thus a(2)=8.
PROG
(PARI) a(n) = my(p=prime(n)); (p^p-1)/(p-1) + 1-(p^p-p)/(p-1)^2; \\ Michel Marcus, May 19 2024
CROSSREFS
Cf. A000110.
Sequence in context: A023365 A262826 A013554 * A356202 A076985 A120802
KEYWORD
nonn
AUTHOR
John W. Layman, Oct 18 2010
EXTENSIONS
More terms from Michel Marcus, May 19 2024
STATUS
approved