login
A175911
Concatenate the run lengths of the runs of ones and zeros in the binary representation of n in the lowest possible base where it is possible to represent each run length as a single digit. Convert the result to base 10.
3
1, 3, 2, 5, 7, 7, 3, 7, 16, 15, 14, 8, 22, 13, 4, 9, 29, 49, 17, 41, 31, 43, 23, 11, 25, 67, 23, 14, 53, 21, 5, 11, 46, 117, 30, 50, 148, 52, 27, 87, 124, 63, 122, 44, 130, 93, 34, 14, 45, 76, 26, 68, 202, 70, 39, 15, 57, 213, 54, 22, 106, 31, 6, 13, 67, 231, 47, 118, 469, 121
OFFSET
1,2
LINKS
MATHEMATICA
repcount[x_] := Length/@Split[x]
binrep[x_] := repcount[IntegerDigits[x, 2]]
Table[h = binrep[x]; FromDigits[h, Max[h] + 1], {x, 1, DESIRED_NUMBER_OF_DIGITS}]
f[n_] := Block[{a = Length /@ Split@ IntegerDigits[n, 2]}, FromDigits[a, Max@ a + 1]]; Array[f, 70] (* Robert G. Wilson v, Aug 17 2013 *)
PROG
(Haskell)
a175911 n = foldl1 (\v d -> b * v + d) rls where
b = maximum rls + 1
rls = a101211_row n
-- Reinhard Zumkeller, Dec 16 2013
CROSSREFS
Cf. A043276.
Sequence in context: A294371 A325985 A151749 * A337405 A304881 A266635
KEYWORD
base,easy,nonn
AUTHOR
Dylan Hamilton, Oct 14 2010
STATUS
approved