The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A175870 Partial sums of ceiling(n^2/24). 1
 0, 1, 2, 3, 4, 6, 8, 11, 14, 18, 23, 29, 35, 43, 52, 62, 73, 86, 100, 116, 133, 152, 173, 196, 220, 247, 276, 307, 340, 376, 414, 455, 498, 544, 593, 645, 699, 757, 818, 882, 949, 1020, 1094, 1172, 1253, 1338, 1427, 1520, 1616, 1717, 1822 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS There are several sequences of integers of the form ceiling(n^2/k) for whose partial sums we can establish identities as following (only for k = 2,...,8,10,11,12, 14,15,16,19,20,23,24). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..900 Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1. Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-1,-1,1,-1,2,-1). FORMULA a(n) = round((2*n+1)*(2*n^2 + 2*n + 95)/288). a(n) = floor((n+1)*(2*n^2 + n + 95)/144). a(n) = ceiling((2*n^3 + 3*n^2 + 96*n)/144). a(n) = a(n-24) + (n+1)*(n-24) + 220. G.f.: x*(x^6 - x^3 + 1)/((x-1)^4*(x+1)*(x^2+1)*(x^2+x+1)). - Colin Barker, Oct 26 2012 EXAMPLE a(24) = 0 + 1 + 1 + 1 + 1 + 2 + 2 + 3 + 3 + 4 + 5 + 6 + 6 + 8 + 9 + 10 + 11 + 13 + 14 + 16 + 17 + 19 + 21 + 23 + 24 = 220. MAPLE seq(floor((n+1)*(2*n^2+n+95)/144), n=0..50) PROG (MAGMA) [Floor((n+1)*(2*n^2+n+95)/144): n in [0..50]]; // Vincenzo Librandi, Apr 29 2011 (PARI) a(n)=(n+1)*(2*n^2+n+95)\144 \\ Charles R Greathouse IV, Jul 06 2017 CROSSREFS Sequence in context: A075535 A238383 A134953 * A114829 A175869 A007279 Adjacent sequences:  A175867 A175868 A175869 * A175871 A175872 A175873 KEYWORD nonn,easy AUTHOR Mircea Merca, Dec 05 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 10 11:35 EDT 2021. Contains 342845 sequences. (Running on oeis4.)