login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A175833 Periodic sequence: repeat 4,7,11. 2
4, 7, 11, 4, 7, 11, 4, 7, 11, 4, 7, 11, 4, 7, 11, 4, 7, 11, 4, 7, 11, 4, 7, 11, 4, 7, 11, 4, 7, 11, 4, 7, 11, 4, 7, 11, 4, 7, 11, 4, 7, 11, 4, 7, 11, 4, 7, 11, 4, 7, 11, 4, 7, 11, 4, 7, 11, 4, 7, 11, 4, 7, 11, 4, 7, 11, 4, 7, 11, 4, 7, 11, 4, 7, 11, 4, 7, 11, 4, 7, 11, 4, 7, 11, 4, 7, 11 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Continued fraction expansion of (158+sqrt(27226))/78.

LINKS

Table of n, a(n) for n=0..86.

Index entries for linear recurrences with constant coefficients, signature (0,0,1).

FORMULA

G.f.: (4 + 7*x + 11*x^2)/(1 - x^3).

a(n) = a(n-3) for n>2.

a(n) = 4*A010882(n) - A011655(n) = 4*(n + 1 - 3*floor(n/3)) - (1 - (-1)^(n-3*floor((n+1)/3)))/2.

a(n) = (43*(n mod 3) + 10*((n+1) mod 3) + 13*((n+2) mod 3))/9 (cf. forms of modular arithmetic of Paolo P. Lava, i.e. see A146094).

Sum_{i=0..n} a(i) = 11*(n - floor(n/3)) + 2*(1 - (-1)^(n + 1 + floor((n+1)/3))).

a(n) = 3 + 4*(n mod 3) + ((n+1) mod 3) mod 2. - Paolo P. Lava, Mar 14 2011

MATHEMATICA

PadRight[{}, 120, {4, 7, 11}] (* Harvey P. Dale, Jul 17 2013 *)

PROG

(MAGMA) &cat[[4, 7, 11]^^30];

(Maxima) makelist(concat(4, ", ", 7, ", ", 11), n, 0, 28); /* Bruno Berselli, Nov 13 2012 */

(Python) [4, 7, 11]*30 # Bruno Berselli, Dec 02 2016

CROSSREFS

Cf. A010882, A011655.

Sequence in context: A135262 A061515 A071084 * A171964 A198468 A032547

Adjacent sequences:  A175830 A175831 A175832 * A175834 A175835 A175836

KEYWORD

nonn,easy

AUTHOR

Bruno Berselli, Sep 17 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 20:21 EDT 2019. Contains 328197 sequences. (Running on oeis4.)