This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A175772 Expansion of 1/(1 - x - x^9 - x^17 + x^18). 23
 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 16, 20, 25, 31, 38, 46, 55, 67, 81, 98, 119, 145, 177, 216, 263, 320, 389, 473, 575, 699, 850, 1034, 1258, 1530, 1862, 2265, 2755, 3351, 4076, 4958, 6031, 7336, 8923, 10854, 13203, 16060, 19535, 23762 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,10 COMMENTS The ratio a(n+1)/a(n) is 1.216391661138265... as n->infinity. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Michael Mossinghoff, Small Salem Numbers Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,-1). FORMULA G.f.: 1/((1 - x^2 + x^4)*(1 - x^4 - x^5 - x^6 + x^10)*(1 - x + x^2 - x^3 + x^4)). a(n) = a(n-1) + a(n-9) + a(n-17) - a(n-18). - Harvey P. Dale, Jul 13 2014 MATHEMATICA CoefficientList[Series[1/(1 - x - x^9 - x^17 + x^18), {x, 0, 50}], x] (* or *) LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, -1}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11} , 60] (* Harvey P. Dale, Jul 13 2014 *) PROG (PARI) x='x+O('x^50); Vec(1/(1-x-x^9-x^17+x^18)) \\ G. C. Greubel, Nov 03 2018 (MAGMA) m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x-x^9-x^17+x^18))); // G. C. Greubel, Nov 03 2018 CROSSREFS Cf. A175739. Cf. A029826, A117791, A143419, A143438, A143472, A143619, A143644, A147663, A173908, A173911, A173924, A173925, A174522, A175740, A175773, A175782, A181600, A204631, A225391, A225393, A225394, A225482, A225499. Sequence in context: A106801 A242417 A225657 * A124868 A165209 A072227 Adjacent sequences:  A175769 A175770 A175771 * A175773 A175774 A175775 KEYWORD nonn,easy AUTHOR Roger L. Bagula, Dec 04 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 23 22:17 EDT 2019. Contains 322388 sequences. (Running on oeis4.)