login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A175768 Primes of the form k * b^b + 1, with b > 1. 4
5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 157, 163, 173, 181, 193, 197, 229, 233, 241, 257, 269, 271, 277, 281, 293, 313, 317, 337, 349, 353, 373, 379, 389, 397, 401, 409, 421, 433, 449, 457, 461, 487, 509, 521, 541, 557, 569, 577, 593, 601, 613 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Without the restriction on b, the sequence would be identical to A000040.

LINKS

Seiichi Manyama, Table of n, a(n) for n = 1..10000

EXAMPLE

For a(3), 4 * 2^2 + 1 = 17, which is prime.

From Seiichi Manyama, Mar 27 2018: (Start)

   n | a(n)

  ---+----------------------------------

   1 |   5 =  1 * 2^2 + 1.

   2 |  13 =  3 * 2^2 + 1.

   3 |  17 =  4 * 2^2 + 1.

   4 |  29 =  7 * 2^2 + 1.

   5 |  37 =  9 * 2^2 + 1.

   6 |  41 = 10 * 2^2 + 1.

   7 |  53 = 13 * 2^2 + 1.

   8 |  61 = 15 * 2^2 + 1.

   9 |  73 = 18 * 2^2 + 1.

  10 |  89 = 22 * 2^2 + 1.

  11 |  97 = 24 * 2^2 + 1.

  12 | 101 = 25 * 2^2 + 1.

  13 | 109 = 27 * 2^2 + 1 = 4 * 3^3 + 1. (End)

MATHEMATICA

Take[ Select[ Union@ Flatten@ Table[ k*b^b + 1, {b, 2, 20}, {k, 148}], PrimeQ], 55] (* Robert G. Wilson v, Sep 01 2010 *)

PROG

(PARI) isA175768(n)=if(!isprime(n), return(0)); if(n%4==1|n%27==1, return(1)); forprime(b=5, log(n)/log(7), if(n%(b^b)==1, return(1))); 0 \\ Charles R Greathouse IV, Sep 02 2010

CROSSREFS

Cf. A000040, A002144, A180362, A285015.

Sequence in context: A279857 A077426 A231754 * A002144 A280084 A319287

Adjacent sequences:  A175765 A175766 A175767 * A175769 A175770 A175771

KEYWORD

easy,nonn

AUTHOR

Kevin Batista (kevin762401(AT)yahoo.com), Sep 01 2010

EXTENSIONS

Corrected and edited by Charles R Greathouse IV, Sep 02 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 20 02:46 EDT 2019. Contains 322291 sequences. (Running on oeis4.)