login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A175706 Semiprimes of the form m*p such that k*p=(m*p)-th semiprime. 0
4, 6, 10, 14, 15, 22, 38, 57, 58, 62, 69, 82, 85, 123, 129, 142, 158, 178, 194, 202, 203, 205, 214, 218, 221, 254, 274, 295, 303, 327, 339, 346, 365, 411, 413, 422, 437, 478, 482, 485, 519, 543, 545, 551, 622, 626, 635, 694, 723, 734, 745, 753, 794, 813, 893 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..55.

EXAMPLE

a(1)=4 because 5*2=(2*2)-th semiprime, a(2)=6 because 5*3=(2*3)-th semiprime, a(3)=10 because 13*2=(5*2)-th semiprime, a(4)=14 because 19*2=(7*2)-th semiprime, a(5)=15 because 13*3=(5*3)-th semiprime, a(6)=22 because 31*2=(11*2)-th semiprime.

MAPLE

Contribution from R. J. Mathar, Aug 10 2010: (Start)

A001358 := proc(n) option remember; local a; if n = 1 then 4; else for a from procname(n-1)+1 do if numtheory[bigomega](a) = 2 then return a; end if; end do: end if; end proc:

for i from 1 to 300 do mp := A001358(i) ; kp := A001358(mp) ; p := igcd(mp, kp) ; if isprime(p) then printf("%d, ", mp) ; end if; end do: (End)

MATHEMATICA

SemiPrimeQ[n_Integer] := If[Abs[n]<2, False, (2==Plus@@Transpose[FactorInteger[Abs[n]]][[2]])]; sp=Select[Range[10000], SemiPrimeQ]; sp2=Select[sp, #<Length[sp]&]; Select[sp2, GCD[ #, sp[[ # ]]]>1&] [From T. D. Noe, Aug 11 2010]

CROSSREFS

Cf. A000040, A001358.

Sequence in context: A065073 A084997 A300912 * A110507 A224467 A134624

Adjacent sequences:  A175703 A175704 A175705 * A175707 A175708 A175709

KEYWORD

nonn,less

AUTHOR

Juri-Stepan Gerasimov, Aug 10 2010

EXTENSIONS

Corrected and extended by R. J. Mathar and T. D. Noe, Aug 11 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 25 22:28 EDT 2019. Contains 321477 sequences. (Running on oeis4.)