login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A175661 Eight bishops and one elephant on a 3 X 3 chessboard: a(n) = 2^(n+2)-3*F(n+1), with F(n) = A000045(n). 3
1, 5, 10, 23, 49, 104, 217, 449, 922, 1883, 3829, 7760, 15685, 31637, 63706, 128111, 257353, 516536, 1036033, 2076857, 4161466, 8335475, 16691245, 33415328, 66883789, 133853549, 267846202, 535917479, 1072199137, 2144987528 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The a(n) represent the number of n-move routes of a fairy chess piece starting in the central square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a bishop on the eight side and corner squares but on the central square the bishop turns into a raging elephant, see A175654.

The sequence above corresponds to four A[5] vectors with decimal values 171, 174, 234 and 426. These vectors lead for the side squares to A000079 and for the corner squares to A175660 (a(n)=2^(n+2)-3*F(n+2)).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (3,-1,-2).

FORMULA

G.f.: (1 + 2*x - 4*x^2)/(1 - 3*x + x^2 + 2*x^3).

a(n) = 3*a(n-1) - a(n-2) - 2*a(n-3) with a(0)=1, a(1)=5 and a(2)=10.

MAPLE

nmax:=29; m:=5; A[5]:= [0, 1, 0, 1, 0, 1, 0, 1, 1]: A:=Matrix([[0, 0, 0, 0, 1, 0, 0, 0, 1], [0, 0, 0, 1, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 0, 1, 0, 0], [0, 1, 0, 0, 0, 0, 0, 1, 0], A[5], [0, 1, 0, 0, 0, 0, 0, 1, 0], [0, 0, 1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 1, 0, 0, 0], [1, 0, 0, 0, 1, 0, 0, 0, 0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m, k], k=1..9): od: seq(a(n), n=0..nmax);

MATHEMATICA

CoefficientList[Series[(1 + 2 x - 4 x^2) / (1 - 3 x + x^2 + 2 x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 21 2013 *)

LinearRecurrence[{3, -1, -2}, {1, 5, 10}, 30] (* Harvey P. Dale, Apr 15 2019 *)

PROG

(MAGMA) I:=[1, 5, 10]; [n le 3 select I[n] else 3*Self(n-1)-Self(n-2)-2*Self(n-3): n in [1..35]]; // Vincenzo Librandi, Jul 21 2013

CROSSREFS

Cf. A175655 (central square).

Cf. A027973 (2^(n+2)+F(n)-F(n+4)), A099036 (2^n-F(n)), A167821 (2^(n+1)-2*F(n+2)), A175657 (3*2^n-2*F(n+1)), A175660 (2^(n+2)-3*F(n+2)), A179610 (convolution of (-4)^n and F(n+1)).

Sequence in context: A260567 A257464 A295731 * A197174 A098112 A237435

Adjacent sequences:  A175658 A175659 A175660 * A175662 A175663 A175664

KEYWORD

easy,nonn

AUTHOR

Johannes W. Meijer, Aug 06 2010, Aug 10 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 23 19:36 EST 2020. Contains 331175 sequences. (Running on oeis4.)