login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A175644 Decimal expansion of the sum 1/p^2 over primes p == 1 (mod 3). 13
0, 3, 3, 2, 1, 5, 5, 5, 0, 3, 2, 2, 2, 1, 7, 9, 5, 0, 5, 5, 2, 9, 2, 7, 1, 7, 7, 7, 8, 0, 1, 3, 8, 0, 9, 6, 4, 8, 1, 0, 8, 7, 5, 6, 6, 6, 5, 3, 2, 6, 6, 8, 3, 0, 5, 7, 3, 2, 8, 8, 5, 6, 6, 2, 4, 6, 2, 6, 8, 3, 6, 7, 2, 4, 1, 5, 4, 3, 4, 2, 8, 9, 8, 8, 9, 4, 4, 1, 7, 3, 9, 9, 4, 4, 1, 7, 0, 5, 8, 1, 5, 9, 7, 4, 4, 8 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
The prime zeta modulo function at 2 for primes of the form 3k+1, which is P_{3,2}(2) = Sum_{p in A002476} 1/p^2 = 1/7^2 + 1/13^2 + 1/19^2 + 1/31^2 + ...
The complementary Sum_{p in A003627} 1/p^2 is given by P_{3,2}(2) = A085548 - 1/3^2 - (this value here) = 0.307920758607736436842505075940... = A343612.
LINKS
Jean-François Alcover, Table of n, a(n) for n = 0..1003
R. J. Mathar, Table of Dirichlet L-series and Prime Zeta Modulo Functions for Small Moduli, arXiv:1008.2547 [math.NT], 2010-2015.
EXAMPLE
P_{3,1}(2) = 0.03321555032221795055292717778013809648108756665...
MATHEMATICA
With[{s=2}, Do[Print[N[1/2 * Sum[(MoebiusMu[2*n + 1]/(2*n + 1)) * Log[(Zeta[s + 2*n*s]*(Zeta[s + 2*n*s, 1/6] - Zeta[s + 2*n*s, 5/6])) / ((1 + 2^(s + 2*n*s))*(1 + 3^(s + 2*n*s)) * Zeta[2*(1 + 2*n)*s])], {n, 0, m}], 120]], {m, 100, 500, 100}]] (* Vaclav Kotesovec, Jan 13 2021 *)
digits = 1003;
m = 100; (* initial value of n beyond which summand is considered negligible *)
dm = 100; (* increment of m *)
P[s_, m_] (* "P" short name for "PrimeZeta31" *):= P[s, m] = Sum[Module[{t}, t = s + 2 n*s; MoebiusMu[2n + 1]* ((1/(4n + 2)) (-Log[1 + 2^t] - Log[1 + 3^t] + Log[Zeta[t]] - Log[Zeta[2t]] + Log[Zeta[t, 1/6] - Zeta[t, 5/6]]))], {n, 0, m}] // N[#, digits+10]&;
P[2, m]; P[2, m += dm];
While[ RealDigits[P[2, m]][[1]][[1;; digits]] !=
RealDigits[P[2, m-dm]][[1]][[1;; digits]], Print["m = ", m]; m+=dm];
Join[{0}, RealDigits[P[2, m]][[1]][[1;; digits]]] (* Jean-François Alcover, Jun 24 2022, after Vaclav Kotesovec *)
PROG
(PARI) From M. F. Hasler, Apr 23 2021: (Start)
s=0; forprimestep(p=1, 1e8, 3, s+=1./p^2); s \\ For illustration: primes up to 10^N give only about 2N+2 (= 18 for N=8) correct digits.
PrimeZeta31(s)=suminf(n=0, my(t=s+2*n*s); moebius(2*n+1)*log((zeta(t)*(zetahurwitz(t, 1/6)-zetahurwitz(t, 5/6)))/((1+2^t)*(1+3^t)*zeta(2*t)))/(4*n+2)) \\ Inspired from Kotesovec's Mmca code
A175644_upto(N=100)={localprec(N+5); digits((PrimeZeta31(2)+1)\.1^N)[^1]} \\ (End)
CROSSREFS
Cf. A086032 (P_{4,1}(2): same for p==1 (mod 4)), A175645 (P_{3,1}(3): same for 1/p^3), A343612 (P_{3,2}(2): same for p==2 (mod 3)), A085548 (PrimeZeta(2)).
Sequence in context: A038766 A080993 A140259 * A102905 A020862 A131589
KEYWORD
cons,nonn
AUTHOR
R. J. Mathar, Aug 01 2010
EXTENSIONS
More digits from Vaclav Kotesovec, Jun 27 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 21:09 EDT 2024. Contains 371798 sequences. (Running on oeis4.)