login
A175593
Numbers k such that 2*k has no primitive root but 2*k-1 and 2*k+1 both have primitive roots.
2
4, 6, 12, 14, 15, 21, 24, 30, 36, 40, 51, 54, 63, 69, 75, 84, 90, 96, 99, 114, 120, 135, 141, 156, 174, 180, 210, 216, 231, 261, 285, 300, 309, 321, 330, 364, 405, 411, 414, 420, 429, 441, 510, 516, 525, 531, 546, 576, 615, 639, 645, 651, 660, 684, 714, 726, 741
OFFSET
1,1
LINKS
FORMULA
{k: A046145(2*k)=0 and A046145(2*k-1)>0 and A046145(2*k+1)>0}.
EXAMPLE
4 is in the sequence because 8 is not in A033948 but 7 and 9 are.
MATHEMATICA
noprQ[n_] := ! IntegerQ @ PrimitiveRoot[n]; q[n_] := noprQ /@ (2*n + {-1, 0, 1}) == {False, True, False}; Select[Range[2, 1000], q] (* Amiram Eldar, Oct 03 2021 *)
CROSSREFS
Sequence in context: A359040 A310595 A350864 * A163097 A110178 A318712
KEYWORD
nonn
AUTHOR
Vladislav-Stepan Malakhovsky and Juri-Stepan Gerasimov, Jul 20 2010
STATUS
approved