%I #11 Jul 24 2019 15:21:55
%S 1,2,13,753,767,1336,1771,1773,1911,2487,3527,4192,5061,5343,5973,
%T 6341,7062,7777,8932,9153,15301,17976,18713,19543,20318,22253,24068,
%U 27461,29416,29502,31383,31593,31616,31693,36026,36087,41456,42966,44711,45453,45493,46766,49067,50602,51212,51393,53193,56762,58267,60332,60918,64126,65727,67872,71266,72011,75861,78728,79652,82978,85246,86207,86988,87793,90873,91753,94173,97297
%N Numbers k for which 6k+1, 24k+5, 432k^2+72k-1, and 432k^2+90k-1 are all prime.
%C 10368k^3+3888k^2+336k-5 is a Ruth-Aaron number (2, A039752).
%D C. Nelson, D. E. Penney and C. Pomerance, "714 and 715", J. Recreational Math. 7 (No. 2) 1974, 87-89.
%H Terrel Trotter, Jr., <a href="http://www.trottermath.net/numthry/ruth714.html">1974 article providing the basis for this sequence (for defined variables s, p, q, r, replace x with 3k)</a> [Warning: As of March 2018 this site appears to have been hacked. Proceed with great caution. The original content should be retrieved from the Wayback machine and added here. - _N. J. A. Sloane_, Mar 29 2018]
%t Select[Range[100000], PrimeQ[6 # + 1] && PrimeQ[24 # + 5] && PrimeQ[432*#^2 + 72*# - 1] && PrimeQ[432 #^2 + 90 # - 1] &]
%t Select[Range[100000],AllTrue[{6#+1,24#+5,432#^2+72#-1,432#^2+90#-1}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Jul 24 2019 *)
%Y Cf. A039752.
%K nonn
%O 1,2
%A _Hans Havermann_, Dec 03 2010