login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A175505 Numerator of A053818(n)/A023896(n) = antiharmonic mean of numbers k such that GCD(k,n) = 1, 1 <= k < n. 19
1, 1, 5, 5, 3, 13, 13, 21, 53, 7, 7, 49, 25, 29, 31, 85, 11, 109, 37, 27, 43, 15, 15, 193, 83, 53, 485, 113, 19, 59, 61, 341, 67, 23, 71, 433, 73, 77, 79, 107, 27, 83, 85, 59, 271, 31, 31, 769, 685, 167, 103, 209, 35, 973, 37, 449, 115, 39, 39, 239, 121, 125, 379, 1365 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

See A175506 - denominators of the antiharmonic means B of numbers k such that GCD(k, n) = 1 for numbers n >= 1 and k < n where B = A053818(n) / A023896(n) = a(n) / A175506(n).

LINKS

Table of n, a(n) for n=1..64.

Wikipedia, Contraharmonic mean.

FORMULA

a(n) = A053818(n) * A175506(n) / A023896(n).

MAPLE

antiHMean := proc(L)

    add(i^2, i=L)/add(i, i=L) ;

end proc:

A175505 := proc(n)

    local kset, k ;

    kset := [1] ;

    for k from 2 to n do

        if igcd(k, n) = 1 then

            kset := [op(kset), k] ;

        end if;

    end do:

    antiHMean(kset) ;

    numer(%) ;

end proc: # R. J. Mathar, Sep 26 2013

MATHEMATICA

f[n_] := 2Plus @@ (Select[ Range@n, GCD[ #, n] == 1 &]^2)/(n*EulerPhi@n); f[1] = 1; Numerator@Array[f, 65] (* Robert G. Wilson v, Jul 01 2010 *)

PROG

(PARI) A175505(n)=numerator(2*n+(-1)^omega(n)*A007947(n)/n)/3) \\ M. F. Hasler, Nov 29 2010

CROSSREFS

Sequence in context: A213054 A232609 A225666 * A158274 A202695 A110986

Adjacent sequences:  A175502 A175503 A175504 * A175506 A175507 A175508

KEYWORD

nonn,frac

AUTHOR

Jaroslav Krizek, May 31 2010, Jun 01 2010

EXTENSIONS

More terms from Robert G. Wilson v, Jul 01 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 23 12:43 EDT 2019. Contains 321430 sequences. (Running on oeis4.)