|
|
A175342
|
|
Number of arithmetic progressions (where the difference between adjacent terms is either positive, 0, or negative) of positive integers that sum to n.
|
|
26
|
|
|
1, 2, 4, 5, 6, 10, 8, 10, 15, 14, 12, 22, 14, 18, 28, 21, 18, 34, 20, 28, 38, 28, 24, 46, 31, 32, 48, 38, 30, 62, 32, 40, 58, 42, 46, 73, 38, 46, 68, 58, 42, 84, 44, 56, 90, 56, 48, 94, 55, 70, 90, 66, 54, 106, 70, 74, 100, 70, 60, 130, 62, 74, 118, 81, 82, 130, 68, 84, 120
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Lars Blomberg, Table of n, a(n) for n = 1..10000
Lars Blomberg, C# program for calculating b-file.
Sadek Bouroubi and Nesrine Benyahia Tani, Integer partitions into arithmetic progressions, Rostok. Math. Kolloq. 64 (2009), 11-16.
Graeme McRae, Counting arithmetic sequences whose sum is n.
Graeme McRae, Counting arithmetic sequences whose sum is n [Cached copy]
Augustine O. Munagi, Combinatorics of integer partitions in arithmetic progression, Integers 10(1) (2010), 73-82.
Augustine O. Munagi and Temba Shonhiwa, On the partitions of a number into arithmetic progressions, Journal of Integer Sequences 11 (2008), Article 08.5.4.
A. N. Pacheco Pulido, Extensiones lineales de un poset y composiciones de números multipartitos, Maestría thesis, Universidad Nacional de Colombia, 2012.
Wikipedia, Arithmetic progression.
Gus Wiseman, Sequences counting and ranking integer partitions by the differences of their successive parts.
|
|
FORMULA
|
a(n) = 2*A049988(n) - A000005(n).
G.f.: x/(1-x) + Sum_{k>=2} x^k * (1 + x^(k(k-1)/2)) / (1 - x^(k(k-1)/2)) / (1 -x^k).
|
|
EXAMPLE
|
From Gus Wiseman, May 15 2019: (Start)
The a(1) = 1 through a(8) = 10 compositions with equal differences:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (12) (13) (14) (15) (16) (17)
(21) (22) (23) (24) (25) (26)
(111) (31) (32) (33) (34) (35)
(1111) (41) (42) (43) (44)
(11111) (51) (52) (53)
(123) (61) (62)
(222) (1111111) (71)
(321) (2222)
(111111) (11111111)
(End)
|
|
MATHEMATICA
|
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], SameQ@@Differences[#]&]], {n, 0, 15}] (* returns a(0) = 1, Gus Wiseman, May 15 2019*)
|
|
CROSSREFS
|
Cf. A000005, A000079, A049980, A049981, A049982, A049983, A049986, A049987, A049988, A049989, A049990, A070211, A127938, A175327, A325328, A325407, A325545, A325546, A325547, A325548, A325557, A325558.
Sequence in context: A136585 A122721 A014224 * A077312 A325558 A140779
Adjacent sequences: A175339 A175340 A175341 * A175343 A175344 A175345
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Leroy Quet, Apr 17 2010
|
|
EXTENSIONS
|
Edited and extended by Max Alekseyev, May 03 2010
|
|
STATUS
|
approved
|
|
|
|