login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A175342 Number of arithmetic progressions (where the difference between adjacent terms is either positive, 0, or negative) of positive integers that sum to n. 26
1, 2, 4, 5, 6, 10, 8, 10, 15, 14, 12, 22, 14, 18, 28, 21, 18, 34, 20, 28, 38, 28, 24, 46, 31, 32, 48, 38, 30, 62, 32, 40, 58, 42, 46, 73, 38, 46, 68, 58, 42, 84, 44, 56, 90, 56, 48, 94, 55, 70, 90, 66, 54, 106, 70, 74, 100, 70, 60, 130, 62, 74, 118, 81, 82, 130, 68, 84, 120 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Lars Blomberg, Table of n, a(n) for n = 1..10000

Lars Blomberg, C# program for calculating b-file.

Sadek Bouroubi and Nesrine Benyahia Tani, Integer partitions into arithmetic progressions, Rostok. Math. Kolloq. 64 (2009), 11-16.

Graeme McRae, Counting arithmetic sequences whose sum is n.

Graeme McRae, Counting arithmetic sequences whose sum is n [Cached copy]

Augustine O. Munagi, Combinatorics of integer partitions in arithmetic progression, Integers 10(1) (2010), 73-82.

Augustine O. Munagi and Temba Shonhiwa, On the partitions of a number into arithmetic progressions, Journal of Integer Sequences 11 (2008), Article 08.5.4.

A. N. Pacheco Pulido, Extensiones lineales de un poset y composiciones de números multipartitos, Maestría thesis, Universidad Nacional de Colombia, 2012.

Wikipedia, Arithmetic progression.

Gus Wiseman, Sequences counting and ranking integer partitions by the differences of their successive parts.

FORMULA

a(n) = 2*A049988(n) - A000005(n).

G.f.: x/(1-x) + Sum_{k>=2} x^k * (1 + x^(k(k-1)/2)) / (1 - x^(k(k-1)/2)) / (1 -x^k).

EXAMPLE

From Gus Wiseman, May 15 2019: (Start)

The a(1) = 1 through a(8) = 10 compositions with equal differences:

  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)

       (11)  (12)   (13)    (14)     (15)      (16)       (17)

             (21)   (22)    (23)     (24)      (25)       (26)

             (111)  (31)    (32)     (33)      (34)       (35)

                    (1111)  (41)     (42)      (43)       (44)

                            (11111)  (51)      (52)       (53)

                                     (123)     (61)       (62)

                                     (222)     (1111111)  (71)

                                     (321)                (2222)

                                     (111111)             (11111111)

(End)

MATHEMATICA

Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], SameQ@@Differences[#]&]], {n, 0, 15}] (* returns a(0) = 1, Gus Wiseman, May 15 2019*)

CROSSREFS

Cf. A000005, A000079, A049980, A049981, A049982, A049983, A049986, A049987, A049988, A049989, A049990, A070211, A127938, A175327, A325328, A325407, A325545, A325546, A325547, A325548, A325557, A325558.

Sequence in context: A136585 A122721 A014224 * A077312 A325558 A140779

Adjacent sequences:  A175339 A175340 A175341 * A175343 A175344 A175345

KEYWORD

nonn

AUTHOR

Leroy Quet, Apr 17 2010

EXTENSIONS

Edited and extended by Max Alekseyev, May 03 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 23:29 EST 2019. Contains 329910 sequences. (Running on oeis4.)