

A175309


a(n) = the smallest prime p(k) such that p(k+j)  p(k+j1) = p(n+k+1j)  p(n+kj) for all j with 1 <= j <= n.


10



2, 3, 5, 18713, 5, 683747, 17, 98303867, 13, 60335249851, 137, 1169769749111, 8021749, 3945769040698829, 1071065111, 159067808851610411, 1613902553
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

From M. F. Hasler, Apr 02 2010: (Start)
Also: Start of the first sequence of n+1 consecutive primes symmetrically distributed w.r.t. their barycenter, e.g., [2,3], [3,5,7], [5,7,11,13], [18713, 18719, 18731, 18743, 18749]. With this definition, it would make sense to prefix the sequence with an initial term a(0)=2.
Sequence A081235 (or A055382, which is essentially the same) consists of every other term of this sequence. (End)


LINKS

Table of n, a(n) for n=1..17.
BOINC project to search all up to 2^64


FORMULA

a(2n1) = A081235(n) (= A055382(n) for n>1). [M. F. Hasler, Apr 02 2010]


PROG

(PARI) a(n)={ my( last=vector(n++, i, prime(i)), m, i=Mod(n2, n)); forprime(p=last[n], default(primelimit), m=last[1+lift(i+2)]+last[1+lift(i++)]=p; for( j=1, n\2, last[1+lift(ij)]+last[1+lift(i+j+1)]==m  next(2)); return( last[1+lift(i+1)])) } \\ M. F. Hasler, Apr 02 2010
(PARI) isok(p, n) = {my(k=primepi(p)); for (j=1, n, if (prime(k+j)  prime(k+j1) != prime(n+k+1j)  prime(n+kj), return (0)); ); return (1); } \\ Michel Marcus, Apr 08 2017


CROSSREFS

Cf. A006562, A051795, A081415, A096710, A055382.
Sequence in context: A072712 A046476 A263429 * A193888 A141186 A078682
Adjacent sequences: A175306 A175307 A175308 * A175310 A175311 A175312


KEYWORD

more,nonn


AUTHOR

Leroy Quet, Mar 27 2010


EXTENSIONS

Terms through a(12) were calculated by (in alphabetical order) Franklin T. AdamsWatters, Hans Havermann and D. S. McNeil
Minor edits by N. J. A. Sloane, Apr 02 2010
a(14) from Dmitry Petukhov, added by Max Alekseyev, Nov 03 2014
a(16) from BOINC project, added by Dmitry Petukhov, Apr 06 2017


STATUS

approved



