OFFSET
1,1
COMMENTS
From M. F. Hasler, Apr 02 2010: (Start)
Also: Start of the first sequence of n+1 consecutive primes symmetrically distributed w.r.t. their barycenter, e.g., [2,3], [3,5,7], [5,7,11,13], [18713, 18719, 18731, 18743, 18749]. With this definition, it would make sense to prefix the sequence with an initial term a(0)=2.
Sequence A081235 (or A055382, which is essentially the same) consists of every other term of this sequence. (End)
a(19) = 1797595814863, a(21) = 633925574060671, a(23) = 22930603692243271. - Tomáš Brada, May 25 2020
LINKS
BOINC project to search all up to 2^64
FORMULA
MATHEMATICA
A175309[n_] := Module[{k},
k = 1; While[! AllTrue[Range[n], Prime[k+#] - Prime[k+#-1] ==
Prime[n+k+1-#] - Prime[n+k-#] &], k++]; Return[Prime[k]]];
Table[A175309[n], {n, 1, 7}] (* Robert Price, Mar 27 2019 *)
PROG
(PARI) a(n)={ my( last=vector(n++, i, prime(i)), m, i=Mod(n-2, n)); forprime(p=last[n], default(primelimit), m=last[1+lift(i+2)]+last[1+lift(i++)]=p; for( j=1, n\2, last[1+lift(i-j)]+last[1+lift(i+j+1)]==m || next(2)); return( last[1+lift(i+1)])) } \\ M. F. Hasler, Apr 02 2010
(PARI) isok(p, n) = {my(k=primepi(p)); for (j=1, n, if (prime(k+j) - prime(k+j-1) != prime(n+k+1-j) - prime(n+k-j), return (0)); ); return (1); } \\ Michel Marcus, Apr 08 2017
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Leroy Quet, Mar 27 2010
EXTENSIONS
Terms through a(12) were calculated by (in alphabetical order) Franklin T. Adams-Watters, Hans Havermann and D. S. McNeil
Minor edits by N. J. A. Sloane, Apr 02 2010
a(14) from Dmitry Petukhov, added by Max Alekseyev, Nov 03 2014
a(16) from BOINC project, added by Dmitry Petukhov, Apr 06 2017
STATUS
approved