login
A175299
a(n) = the smallest positive integer such that A175298(a(n)) = the n-th positive integer that is a palindrome when written in binary.
0
1, 2, 4, 6, 8, 10, 16, 20, 18, 22, 32, 36, 34, 38, 64, 72, 68, 76, 66, 74, 70, 78, 128, 136, 132, 140, 130, 138, 134, 142, 256, 272, 264, 280, 260, 276, 268, 284, 258, 274, 266, 282, 262, 278, 270, 286, 512, 528, 520, 536, 516, 532, 524, 540, 514, 530, 522
OFFSET
1,2
FORMULA
a(n) = 2^floor(log_2(P(n))) + P(n)(mod 2^(floor(log_2(P(n))/2)+1)) -1, where P(n) = the n-th positive integer that is a palindrome when written in binary.
CROSSREFS
Sequence in context: A088007 A302299 A227992 * A088008 A067720 A078106
KEYWORD
base,nonn
AUTHOR
Leroy Quet, Mar 24 2010
EXTENSIONS
More terms from Nathaniel Johnston, Nov 18 2010
STATUS
approved