The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A175267 a(n) = the minimum number of 0's that, if removed from the binary representation of n, leaves a palindrome. 0
 0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 1, 2, 1, 1, 0, 4, 0, 1, 2, 2, 0, 2, 1, 3, 2, 2, 0, 2, 1, 1, 0, 5, 0, 1, 3, 2, 1, 3, 2, 3, 1, 1, 1, 3, 0, 2, 1, 4, 3, 3, 0, 3, 1, 1, 1, 3, 2, 2, 1, 2, 1, 1, 0, 6, 0, 1, 4, 2, 2, 4, 3, 3, 0, 2, 2, 4, 1, 3, 2, 4, 2, 2, 1, 2, 0, 2, 2, 4, 1, 1, 2, 3, 0, 2, 1, 5, 4, 4, 0, 4, 1, 1, 2, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS a(2^m) = m, for all m >= 0. a(2^m-1) = 0 for all m >= 0. If 2^k is the largest power of 2 that divides n, then a(n) >= k. LINKS EXAMPLE 20 in binary is 10100. This is not a palindrome, so a(20) > 0. Removing one 0 gets either 1100 or 1010 (the latter in two ways). Neither of these is a palindrome, so a(20)>1. But removing the last two 0's so that we have 101 does indeed leave a palindrome. So a(20) = 2. CROSSREFS Sequence in context: A060689 A053119 A162515 * A108045 A298972 A143728 Adjacent sequences: A175264 A175265 A175266 * A175268 A175269 A175270 KEYWORD base,nonn AUTHOR Leroy Quet, Mar 18 2010 EXTENSIONS Extended by D. S. McNeil, May 10 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 02:09 EST 2022. Contains 358712 sequences. (Running on oeis4.)