%I
%S 1,16,64,512,1024,6561,16384,32768,531441,2097152,4194304,33554432,
%T 67108864,387420489,3486784401,8589934592,17179869184,34359738368,
%U 274877906944,549755813888,7625597484987,22876792454961,70368744177664
%N Numbers n such that bigomega(bigomega(n)) ^ bigomega(n) = n.
%C bigomega(.) = A001222(.).
%C There exists an infinity of solutions n of the form n = q^p, where q is prime, bigomega(q^p)= p, and bigomega(p)= q, if we select, for example, p = 2^q.
%C The first solution with q=5 is n=5^32, the first solution with q=7 is n=7^128.
%e With n = 16 = 2^4, bigomega(16)= 4, bigomega(4)= 2,and 2^4 = 16.
%e With n = 531441=3^12, bigomega(3^12)= 12, bigomega(12)= 3,and 3^12 = 531441.
%p with(numtheory): for n from 1 to 1000000000 do: if bigomega(bigomega(n))^bigomega(n)= n then print(n) : fi: od :
%Y Cf. A001222, A167746.
%K nonn
%O 1,2
%A _Michel Lagneau_, Mar 05 2010
%E Unspecific references and unrelated crossreferences removed  _R. J. Mathar_, Mar 21 2010
